• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 165
  • 33
  • 19
  • 19
  • 15
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 299
  • 41
  • 40
  • 39
  • 34
  • 33
  • 33
  • 30
  • 27
  • 22
  • 22
  • 21
  • 20
  • 20
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Spatial Service Systems Modelled as Stochastic Integrals of Marked Point Processes

Jones, Matthew O. 14 July 2005 (has links)
We characterize the equilibrium behavior of a class of stochastic particle systems, where particles (representing customers, jobs, animals, molecules, etc.) enter a space randomly through time, interact, and eventually leave. The results are useful for analyzing the dynamics of randomly evolving systems including spatial service systems, species populations, and chemical reactions. Such models with interactions arise in the study of species competitions and systems where customers compete for service (such as wireless networks). The models we develop are space-time measure-valued Markov processes. Specifically, particles enter a space according to a space-time Poisson process and are assigned independent and identically distributed attributes. The attributes may determine their movement in the space, and whenever a new particle arrives, it randomly deletes particles from the system according to their attributes. Our main result establishes that spatial Poisson processes are natural temporal limits for a large class of particle systems. Other results include the probability distributions of the sojourn times of particles in the systems, and probabilities of numbers of customers in spatial polling systems without Poisson limits.
172

Hardy-Sobolev-Maz'ya inequalities for fractional integrals on halfspaces and convex domains

Sloane, Craig Andrew 24 May 2011 (has links)
This thesis will present new results involving Hardy and Hardy-Sobolev-Maz'ya inequalities for fractional integrals. There are two key ingredients to many of these results. The first is the conformal transformation between the upper halfspace and the unit ball. The second is the pseudosymmetric halfspace rearrangement, which is a type of rearrangment on the upper halfspace based on Carlen and Loss' concept of competing symmetries along with certain geometric considerations from the conformal transformation. After reducing to one dimension, we can use the conformal transformation to prove a sharp Hardy inequality for general domains, as well as an improved fractional Hardy inequality over convex domains. Most importantly, the sharp constant is the same as that for the halfspace. Two new Hardy-Sobolev-Maz'ya inequalities will also be established. The first will be a weighted inequality that has a strong relationship with the pseudosymmetric halfspace rearrangement. Then, the psuedosymmetric halfspace rearrangement will play a key part in proving the existence of the standard Hardy-Sobolev-Maz'ya inequality on the halfspace, as well as some results involving the existence of minimizers for that inequality.
173

Uniform bounds for the bilinear Hilbert transforms /

Li, Xiaochun, January 2001 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2001. / Typescript. Vita. Includes bibliographical references (leaves 136-138). Also available on the Internet.
174

A study of linguistic pattern recognition and sensor fusion /

Auephanwiriyakul, Sansanee, January 2000 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2000. / Typescript. Vita. Includes bibliographical references (leaves 210-216). Also available on the Internet.
175

A study of linguistic pattern recognition and sensor fusion

Auephanwiriyakul, Sansanee, January 2000 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2000. / Typescript. Vita. Includes bibliographical references (leaves 210-216). Also available on the Internet.
176

Uniform bounds for the bilinear Hilbert transforms

Li, Xiaochun, January 2001 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2001. / Typescript. Vita. Includes bibliographical references (leaves 136-138). Also available on the Internet.
177

Multi-time Scales Stochastic Dynamic Processes: Modeling, Methods, Algorithms, Analysis, and Applications

Pedjeu, Jean-Claude 01 January 2012 (has links)
By introducing a concept of dynamic process operating under multi-time scales in sciences and engineering, a mathematical model is formulated and it leads to a system of multi-time scale stochastic differential equations. The classical Picard-Lindel\"{o}f successive approximations scheme is expended to the model validation problem, namely, existence and uniqueness of solution process. Naturally, this generates to a problem of finding closed form solutions of both linear and nonlinear multi-time scale stochastic differential equations. To illustrate the scope of ideas and presented results, multi-time scale stochastic models for ecological and epidemiological processes in population dynamic are exhibited. Without loss in generality, the modeling and analysis of three time-scale fractional stochastic differential equations is followed by the development of the numerical algorithm for multi-time scale dynamic equations. The development of numerical algorithm is based on the idea if numerical integration in the context of the notion of multi-time scale integration. The multi-time scale approach is applied to explore the study of higher order stochastic differential equations (HOSDE) is presented. This study utilizes the variation of constant parameter technique to develop a method for finding closed form solution processes of classes of HOSDE. Then then probability distribution of the solution processes in the context of the second order equations is investigated.
178

Index Theorems and Supersymmetry

Eriksson, Andreas January 2014 (has links)
The Atiyah-Singer index theorem, the Euler number, and the Hirzebruch signature are derived via the supersymmetric path integral. Concisely, the supersymmetric path integral is a combination of a bosonic and a femionic path integral. The action in the supersymmetric path integral includes here bosonic, fermionic- and isospin fields (backgroundfields), where the cross terms in the Lagrangian are nicely eliminated due to scaling of the fields and using techniques from spontaneous breaking of supersymmetry (that give rise to a mechanism, analogous to the Higgs-mechanism, but here regarding the so called superparticles instead).  Thus, the supersymmetric path integral is a product of three pathintegrals over the three given fields, respectively, that can be evaluated exactly by means of Gaussian integrals. The closely related Witten index is a measure of the failure of spontaneous breaking of supersymmetry. In addition, the basic concepts of supersymmetry breaking are reviewed.
179

Magnetic forces in discrete and continuous systems

Schlömerkemper, Anja 28 November 2004 (has links) (PDF)
The topic of this thesis is a mathematically rigorous derivation of formulae for the magnetic force which is exerted on a part of a bounded magnetized body by its surrounding. Firstly, the magnetic force is considered within a continuous system based on macroscopic magnetostatics. The force formula in this setting is called Brown's force formula referring to W. F. Brown, who gave a mainly physically motivated discussion of it. This formula contains a surface integral which shows a nonlinear dependence on the normal. Brown assumes the existence of an additional term in the surface force which cancels the nonlinearity to allow an application of Cauchy's theorem in continuum mechanics to a magnetoelastic material. The proof of Brown's formula which is given in this work involves a suitable regularization of a hypersingular kernel and uses singular integral methods. Secondly, we consider a discrete, periodic setting of magnetic dipoles and formulate the force between a part of a bounded set and its surrounding. In order to pass to the continuum limit we start from the usual force formula for interacting magnetic dipoles. It turns out that the limit of the discrete force is different from Brown's force formula. One obtains an additional nonlinear surface term which allows one to regard Brown's assumption on the surface force as a consequence of the atomistic approach. Due to short range effects one obtains moreover an additional linear surface term in the continuum limit of the discrete force. This term contains a certain lattice sum which depends on a hypersingular kernel and the underlying lattice structure. / Das Thema dieser Arbeit ist eine mathematisch strenge Herleitung von Formeln für die magnetische Kraft, die auf einen Teil eines beschränkten, magnetischen Körpers durch seine Umgebung ausgeübt wird. Zunächst wird die magnetische Kraft in einem kontinuierlichen System auf Grundlage der makroskopischen Magnetostatik betrachtet. Mit Bezug auf W. F. Brown, der eine vor allem physikalisch motivierte Herleitung der Kraftformel gegeben hat, wird diese auch Brownsche Kraftformel genannt. Das Oberflächenintegral in dieser Formel zeigt eine nichtlineare Abhängigkeit von der Normalen. Um Cauchys Theorem aus der Kontinuumsmechanik in einem magnetoelastischen Material anwenden zu können, nimmt Brown an, dass die Oberflächenkraft einen zusäatzlichen Term enthält, der den nichtlinearen Ausdruck aufhebt. Der Beweis der Brownschen Kraftformel in dieser Arbeit beruht auf einer geeigneten Regularisierung eines hypersingulären Kerns und benutzt Methoden für singuläre Integrale. Danach gehen wir von einem diskreten, periodischen System von magnetischen Dipolen aus und betrachten die Kraft zwischen einem Teil einer beschränkten Menge und der Umgebung. Um zum Kontinuumslimes überzugehen, starten wir von der üblichen Kraftformel für wechselwirkende magnetische Dipole. Es zeigt sich, dass sich der Limes der diskreten Kraft von der Brownschen Kraftformel unterscheidet. Man erhält einen zusätzlichen nichtlinearen Oberflächenterm, der es ermöglicht, Browns Annahme als Konsequenz des atomistischen Zugangs zu sehen. Kurzreichweitige Effekte führen zudem zu einem linearen Oberflächenterm im Kontinuumlimes der diskreten Kraft. Dieser Zusatzterm enthält eine gewisse Gittersumme, die von einem hypersingulären Kern und der Struktur des zugrundeliegenden Gitters abhängt.
180

Método dos elementos de contorno para elasticidade linear 3D com avaliação direta das integrais singulares / Boundary element method for 3D linear elasticity with direct evaluation of singular integrals

Ubessi, Cristiano João Brizzi January 2014 (has links)
Este trabalho apresenta a formulação e implementação numérica do método dos elementos de contorno (MEC) para elasticidade linear tri-dimensional, com avaliação direta das integrais fracamente e fortemente singulares. A implementação segue a formulação tradicional do MEC direto, e a discretização do contorno das variáveis do problema é realizada com elementos descontínuos, permitindo o uso de malhas desconectadas ao longo das superfícies. O cálculo das integrais singulares é realizado através do uso de expansões assintóticas calculadas em torno de um ponto singular genérico. As expressões analíticas destas expansões são apresentadas no trabalho. Estas expansões serão subtraídas do núcleo original regularizando-o e a parte singular é integrada analiticamente, restando apenas uma integral regular, tornando ambas as integrais possíveis de serem calculadas com quadraturas de Gauss. É concluído que o presente método requer menos pontos de integração para o mesmo nível de erro quando comparado com outras técnicas. Alguns casos de elasticidade são resolvidos para ilustrar a eficiência e precisão do método. / This work presents the formulation and implementation of the boundary element method (BEM) to three dimensional linear elastostatics, with the direct evaluation of the strongly singular integral equations. The implementation follows the traditional direct BEM formulation, and the discretization of the boundary is carried out with discontinuous elements, enabling the use of disconnected meshes along the surfaces. The computation of the singular integral equations is accomplished by using the asymptotic expansions derived around a generic singular point. The analytical expressions for these expansions are presented in this work. The expansions are subtracted from the kernel to regularize it. This subtracted part is then added by computing a regular line integral along the boundary of the element. Both the integrals can be calculated with Gauss-type quadratures. It's observed that the present method needs less integration points for the same level of error when compared with other techniques. Several elasticity benchmarks are solved to demonstrate the eficiency and the accuracy of the present method.

Page generated in 0.0397 seconds