• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 3
  • Tagged with
  • 14
  • 14
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudo das etapas de fabricação de dispositivos eletro-termo-ópticos utilizando o interferômetro Mach-Zehnder. / Study of the fabrication steps of an electro-thermo-optical device using Mach-Zehnder interferometer.

Mina, Alexandre Martin 29 July 2008 (has links)
Neste trabalho é realizado o estudo das etapas de fabricação de um dispositivo eletro-termo-óptico. O dispositivo baseia-se em um interferômetro Mach-Zehnder (IMZ) onde um micro-resistor é colocado em um dos braços do IMZ. Este interferômetro foi construído usando guias de onda ARROW (Anti-Resonant Reflecting Optical Waveguide) onde filmes de oxinitreto de silício e carbeto de silício amorfo hidrogenado foram utilizados como materiais constituintes. Estes materiais foram depositados pela técnica de PECVD (Plasma Enhanced Chemical Vapor Deposition) a baixas temperaturas (~300°C) usando silano (SiH4), nitrogênio (N2), hidrogênio (H2), oxido nitroso (N2O) e metano (CH4) como gases precursores. Para isolar termicamente a região de aquecimento do dispositivo, parte do braço sensor do IMZ foi suspenso através da corrosão superficial do substrato de silício em solução de hidróxido de potássio (KOH). Basicamente o dispositivo termo-eletroóptico utiliza para seu funcionamento o efeito termo-óptico dos materiais constituintes. Neste caso, com a aplicação de uma corrente elétrica no micro-resistor localizado em uma pequena região de um dos braços do IMZ é produzido uma variação na temperatura e no índice de refração dos filmes próximos ao microresistor. Com isto, o aparecimento de uma diferença de fase entre as ondas propagantes dos dois braços do IMZ é ocasionado e, como conseqüência, uma interferência eletromagnética dependente da diferença de fase das ondas propagantes causada pela variação de temperatura é originado. Dessa maneira, é possível fabricar um dispositivo termo-eletro-óptico onde uma variação da corrente aplicada no micro-resistor produz uma alteração da potência óptica na saída do interferômetro. / In this work, a study of the steps to fabricate an electro-thermo-optical device is realized. This device is based in a Mach-Zehnder interferometer (IMZ) where a micro-resistor is placed in one of the IMZ arms. The Mach-Zehnder interferometer was fabricated using Anti-Resonant Reflecting Optical Waveguide (ARROW) where oxinytride and amorphous hydrogenated silicon carbide films were used as constituent materials. These materials were deposited by PECVD (Plasma Enhanced Chemical Vapor Deposition) technique at low temperatures (~300°C) using silane (SiH4), nitrogen (N2), hydrogen (H2), nitrous oxide (N2O) and methane (CH4) as precursor gases. In order to isolate thermally the heating region of the structure, part of the IMZ sensor arm was suspended by the surface etching of the silicon substrate in KOH solution. Basically, the electro-thermo-optical device is based in the Thermo- Optic Effect of the constituent materials. In this case, with the application of an electrical current in the micro-resistor located in a small region of the sensor arm of the IMZ, a change in the temperature and in the refractive index of the films close to the micro-resistor is produced. So, a phase difference between the electromagnetic waves that travel by the two arms of the IMZ is produced and, as consequence, an electromagnetic interference dependent of the temperature variation is originated. In this way, it is possible fabricate an electro-thermo-optical device where the optical power output depends of the electrical current applied to a micro-resistor.
2

Estudo das etapas de fabricação de dispositivos eletro-termo-ópticos utilizando o interferômetro Mach-Zehnder. / Study of the fabrication steps of an electro-thermo-optical device using Mach-Zehnder interferometer.

Alexandre Martin Mina 29 July 2008 (has links)
Neste trabalho é realizado o estudo das etapas de fabricação de um dispositivo eletro-termo-óptico. O dispositivo baseia-se em um interferômetro Mach-Zehnder (IMZ) onde um micro-resistor é colocado em um dos braços do IMZ. Este interferômetro foi construído usando guias de onda ARROW (Anti-Resonant Reflecting Optical Waveguide) onde filmes de oxinitreto de silício e carbeto de silício amorfo hidrogenado foram utilizados como materiais constituintes. Estes materiais foram depositados pela técnica de PECVD (Plasma Enhanced Chemical Vapor Deposition) a baixas temperaturas (~300°C) usando silano (SiH4), nitrogênio (N2), hidrogênio (H2), oxido nitroso (N2O) e metano (CH4) como gases precursores. Para isolar termicamente a região de aquecimento do dispositivo, parte do braço sensor do IMZ foi suspenso através da corrosão superficial do substrato de silício em solução de hidróxido de potássio (KOH). Basicamente o dispositivo termo-eletroóptico utiliza para seu funcionamento o efeito termo-óptico dos materiais constituintes. Neste caso, com a aplicação de uma corrente elétrica no micro-resistor localizado em uma pequena região de um dos braços do IMZ é produzido uma variação na temperatura e no índice de refração dos filmes próximos ao microresistor. Com isto, o aparecimento de uma diferença de fase entre as ondas propagantes dos dois braços do IMZ é ocasionado e, como conseqüência, uma interferência eletromagnética dependente da diferença de fase das ondas propagantes causada pela variação de temperatura é originado. Dessa maneira, é possível fabricar um dispositivo termo-eletro-óptico onde uma variação da corrente aplicada no micro-resistor produz uma alteração da potência óptica na saída do interferômetro. / In this work, a study of the steps to fabricate an electro-thermo-optical device is realized. This device is based in a Mach-Zehnder interferometer (IMZ) where a micro-resistor is placed in one of the IMZ arms. The Mach-Zehnder interferometer was fabricated using Anti-Resonant Reflecting Optical Waveguide (ARROW) where oxinytride and amorphous hydrogenated silicon carbide films were used as constituent materials. These materials were deposited by PECVD (Plasma Enhanced Chemical Vapor Deposition) technique at low temperatures (~300°C) using silane (SiH4), nitrogen (N2), hydrogen (H2), nitrous oxide (N2O) and methane (CH4) as precursor gases. In order to isolate thermally the heating region of the structure, part of the IMZ sensor arm was suspended by the surface etching of the silicon substrate in KOH solution. Basically, the electro-thermo-optical device is based in the Thermo- Optic Effect of the constituent materials. In this case, with the application of an electrical current in the micro-resistor located in a small region of the sensor arm of the IMZ, a change in the temperature and in the refractive index of the films close to the micro-resistor is produced. So, a phase difference between the electromagnetic waves that travel by the two arms of the IMZ is produced and, as consequence, an electromagnetic interference dependent of the temperature variation is originated. In this way, it is possible fabricate an electro-thermo-optical device where the optical power output depends of the electrical current applied to a micro-resistor.
3

SOI Based Integrated-Optic Microring Resonators for Biomedical Sensing Applications

Mangal, Nivesh January 2012 (has links) (PDF)
Integrated Silicon Photonics has emerged as a powerful platform in the last two decades amongst high-bandwidth technologies, particularly since the adop- tion of CMOS compatible silicon-on-insulator(SOI) substrates. Microring res- onators are one of the fundamental blocks on a photonic integrated circuit chip o ering versatility in varied applications like sensing, optical bu ering, ltering, loss measurements, lasing, nonlinear e ects, understanding cavity optomechanics etc. This thesis covers the design and modeling of microring resonators for biosensing applications. The two applications considered are : homogeneous biosensing and wrist pulse pressure monitoring. Also, the designs have been used to fabricate ring resonator device using three different techniques. The results obtained through characterization of these devices are presented. Following are the observations made in lieu of this: 1) Design modeling and analysis - The analysis of ring resonator requires the study of both the straight and bent waveguide sections. Both rib and strip waveguide geometries have been considered for constructing the device as a building block by computing their respective eigen modes for both quasi-TE and quasi-TM polarizations. The non-uniform evanescent coupling between the straight and curved waveguide has been estimated using coupled mode theory. This method provided in estimating the quality-factor and free spec- tral range (FSR) of the ring-resonator. A case for optimizing the waveguide gap in the directional coupler section of a ring resonator has been presented for homogeneous biosensing application. On similar lines, a model of applying ring resonator for arterial pulse-pressure measurement has been analyzed. The results have been obtained by employing FD-BPM and FDTD including semi- vectorial eigen mode solutions to evaluate the spectral characteristics of ring resonator. The modeling and analytical results are supported by commercial software tools (RSoft). 2) Fabrication and Characterization - For the fabrication, we employ the design of ring resonator of radius 20 m on SOI substrate with two different waveguide gaps of 350 and 700 nm. Three different process sows have been used for fabricating the same device. The rst technique involved using negative e-beam resist HSQ which after exposure becomes SiO2, acts as a mask for Reactive-Ion Etching (RIE); helping in eliminating an additional step. The second technique involved the use of positive e-beam resist, PMMA for device patterning followed by metal deposition with lift-o . The third tech- nique employed was Focussed Ion-beam (FIB) which is resist-less patterning by bombarding Ga+ ions directly onto the top surface of the wafer with the help of a GDS le. The characterization process involved estimation of loss and observing the be- havior of optical elds in the device around the wavelength of 1550 nm using near-field scanning optical microscopy (NSOM) measurement. The estimation of roughness-induced losses has been made by performing Atomic Force Microscopy (AFM) measurements. In summary, the thesis presents novel design and analysis of SOI based microring resonators for homogeneous biosensing and wrist pulse pressure sensing applications. Also, the fabrication and characterization of 20 m radius ring- resonator with 500 500 nm rib cross-section is presented. Hence, this study brings forth several practical issues concerning application of ring resonators to biosensing applications.
4

Surface acoustic wave controlled semiconductor optical source

Meng, Qingbin January 2009 (has links)
A semiconductor optical source monolithically integrated with a surface acoustic wave (SAW) Bragg-cell to operate as a functional device is proposed in this thesis. The practical structure of such an integrated device is demonstrated and design guidelines are presented. Compared with conventional optical beam processed devices, this functional integrated semiconductor optical source (FISOS) is revised to be compact in size, flexible in function and potentially robust in performance. <br /> The FISOS is analyzed as two sub-divisions, optical source and acoustic processor, which have the common substrate structure. The optical beams excited from the optical source part of the device undergoes a scattering in the Bragg grating formed by SAWs that are generated by an IDT positioned on top of the acoustic processing part of device. By altering the property (power, frequency, etc.) of the SAW, versatile functionalities such as modulation, filtering, beam steering and so on of the optical beams can be realized in this optical source device. <br /> A multilayer structure based on GaN/InGaN MQWs grown on sapphire is designed for the FISOS to be blue light emitting and efficiently launching SAWs. An etch-down technique employed in the SAW processing part is taken to improve the overlap between the optical and acoustic waves and then the interaction efficiency. Optimizations to the geometrical dimensions of the FISOS, such the width of the ridge waveguide, the position of the IDT and the etching depth, etc., are discussed in the given structure. <br /> Numerical models are investigated to access the operational characteristics and then to provide design guidelines for the proposed integrated device. The Bragg diffraction of optical waves occurring within the acoustic waves in the proposed structure are simulated as a two-dimensional interaction between two guided optical modes and an acoustic surface wave. <br /> The modal distributions and propagation velocities of SAWs in a multilayer system are calculated using Adler’s matrix method. The electrical characteristics of an IDT, such as impedance, insertion loss, electromechanical constant and so on are also discussed. <br /> Transverse and lateral optical modes in the given multilayer structure are analyzed by the transfer matrix method. The interaction of optical waves and acoustic waves are modeled using the rigorous grating diffraction theory. Starting from Floquet’s theory, the well-known coupled-wave method and modal method can both be derived from the rigorous grating diffraction theory. Discussions of some useful approximate methods are also presented. In this thesis, the simulations of the acoustooptic interaction are performed using the coupled-wave method. <br /> From the simulation results, the angular distribution profile and spatial profile of the output of the FISOS are evaluated. An improvement to the expression of the diffraction efficiency in such an integrated device is proposed. The so-called beam diffraction efficiency gives a more complete measure to the acoustooptic diffraction and is used to investigate the features of FISOS different from conventional acoustooptic devices. Contour plots of the beam efficiency varying with acoustic frequency and power in a FISOS is demonstrated to be a convenient and powerful approach in the device design. <br /> The operational performances of an integrated deflector and a modulator in FISOS are analyzed to investigate the feasibility of FISOS. The trade-off of the efficiency-resolution in an integrated deflector design is discussed. Short interaction length, high acoustic frequency and narrow ridge are proved to be helpful for a larger number of resolvable spots with a fairly high efficiency. In the case of the integrated modulator, given that the figure of merit Q is fixed, it is demonstrated that the smaller the Q, the longer the interaction length, larger ridge width and lower acoustic frequency will give rise to a larger bandwidth, though the highest efficiency might appear at a higher frequency. <br /> Some practical issues such as the misalignment of planar elements on the device and the incoherence of the integrated optical source are also discussed. A modified working frequency can be used to compensate the efficiency loss in the former case; in the latter case, it is demonstrated that a distortion of beam diffraction efficiency versus acoustic power with an incoherent optical source arises due to the wide spectrum of the incident optical waves.
5

Design and Analysis of Integrated Optic Waveguide Delay Line Phase Shifters for Microwave Photonic Application

Honnungar, Rajini V January 2013 (has links) (PDF)
Microwave Photonics(MWP) has been defined as the study of photonic devices which operate at microwave frequencies and also their applications to microwave and optical systems. One or more electrical signals at microwave frequencies are transported over the optic link ,with electrical to optical and optical to electrical conversion on the transmission and receiving side respectively. The key advantages of microwave photonic links over conventional electrical transmission systems such as coaxial cables or waveguides ,includes reduced size, weight and cost, immunity to electromagnetic interference ,low dispersion and high data transfer capacity. Integrated Optics is the name given to a new generation of opto-electronic systems in which the familiar wires and cables are replaced by light-waveguiding optical fibers, and conventional integrated circuits are replaced by optical integrated circuits (OICs).Microwave Photonics with photonic integration can add the benefits of reduction in system size, losses, short path lengths leading to more efficient cost effective systems. In this thesis, a new approach for using 1-D linear arrays of curved waveguides as delay lines is presented. We propose a design for a passive phase shifter obtained by curved waveguide delay lines. The modulated RF signal obtains the phase shift in the optical domain which is transferred to the RF signal by heterodyning techniques .This phase shift is independent of the RF frequency and hence the Beam squinting which occurs in the conventional RF phase shifter systems is avoided in the proposed system. Switching between different lengths of the bent/curved waveguides can produce variable phase shifts ranging from 0 to 2 radians. The use of curved waveguides for delay generation and optimization of various parameters are the main topics of the research problem. The need for delay line is large and most of these were implemented previously using long optical fiber cables. More precise delays could be obtained by using waveguide delay lines as compared to fiber delay lines. Waveguides paves way for design in smaller dimensions ranging from m to nm in integrated optics. The differential phase shift for a signal propagating in a waveguide from waveguide theory is given as which clearly indicates that the differential phase shifts could be obtained in accordance with differential path lengths Δl with β as the propagation constant. S-bend waveguide sections of different lengths along with straight waveguide as reference for each section are employed. The phase delay is passively obtained by a differential path length change, where various phase shift values can be obtained by switching between different differential path lengths. Since the optical phase delay generated is in- dependent of the input RF frequency. A shift in the RF frequency, at the input will not change the phase or beam pointing angle when the phase shifter is employed for beam pointing in case of Phased Array Antenna applications. A 1-bit phase shifter is the firrst step in the design which could be further extended to n-bit phase shifter. Here 1-bit or n-bit ,is one where n can take any integer value. Each bit is composed of a reference phase signal pathway and a delayed phase signal pathway. When the optical signal goes every single bit through the reference phase the phase shift is ‘0’ radians ,the other is through the delayed path which is . For every n-bit, 2n delays can be obtained. For the 1-bit,2 delays are obtained. Switching between the path lengths is done using the directional coupler switches. Th optimization of different parameters of the S-bend waveguide delay line has been realized and studied. The design and optimisation of a 1-bit optical RF phase shifter is discussed which could be extended to n-bit phase shifters. These S-bends are studied analytically. Beam Propagation Method (BPM)is employed for modeling and simulation of the proposed device. An interferometric configuration is considered for practical measurement of optical phase. In this configuration the phase change is translated into amplitude or intensity measurement. One of the arms of the Maczehdner Interferometer has no path length change while the other arm has an S-bend structure which provides the path length difference as compared to the reference path, and hence produces the necessary phase shift at the output of the interferometer as required. By changing the path length difference between the two arms of the interferometer ,a change in intensity is produced at the output of the interferometer. In this study, integrated optic curved waveguide delay line phase shifters are designed and analyzed, considering the Titanium Di used Lithium Niobate Technology. This is because it has good electro-optic properties necessary for designing switches used for switching between delay segments. Practical parameters that can be fabricated are employed in the design and simulation studies reported here. Fabrication is also done using the Lithium Niobate Technology. However the fabrication studies are excluded from the main stream, as further fabrication studies are necessary to realise the actual devices de- signed. The fabrication aspects are left as scope for further development. The fabricated devices are shown as appendix to the thesis. Organisation of the thesis Chapter 1 gives the introduction to the fields of Microwave Photonics and Integrated optics and its applications. Chapter 2discusses the curved waveguide theory and design with coverage of materials and methods employed in the proposed system. Chapter 3 discusses the different types of delay lines and the design of the 1-bit phase shifter which can be extended to the design of a n-bit phase shifter with both analytical and simulation results. Chapter 4 discusses the method of phase measurement for the n-bit phase shifter and the possible applications where the phase shifter could be employed. Chapter 5 discusses conclusions and future work in the proposed area of work. Appendix A discusses the loss calculations for the Cosine S-bend waveguide. Appendix B gives the fabrication details. The references form the end part of the thesis.
6

Micro-capteur à base d'un spectromètre de Fourier en optique intégrée sur verre / Compact sensor based on Fourier spectrometry in glass integrated optic

Creux, Amélie 24 October 2013 (has links)
La spectrométrie est une méthode d'analyse permerttant d'avoir accès à la composition et à la strucuture de la matière. Les spectromètres étant utilisés dans de nombreux domaines , beaucoup de développements sont réalisés afin de les rendre plus compacts pour des raisons de place et de mobilité. Cette thèse présente la réalisation et la caractérisation d'un spectromètre de Fourier en optique intégrée sur verre appelé LLIFTS (Leaky Loop Integrated Fourier Transform Spectrometer). Il utilise le couplage d'un guide plan avec un guide courbe à fuite pour créer un interférogramme de Fourier. Des caractérisations dans le proche infrarouge et dans le domaine du visible ont permis de mesurer une résolution spectrale de 7nm (R=221) entre 1500nm et 1600nm et de 3nm (R=260) à 4nm (R=221) entre 700nm et 900nm. Le LLIFTS permet donc d'obtenir des résolutions spectrales équivalentes aus autres spectromètres compacts existants mais avec l'avantage d'être facilement réalisable. L'accès à l'interférogrmme de Fourier permet aussi de détecter des variations de phase entre deux ondes. Ce qui permet d'utiliser le LLIFTS dans des applications comme la tomographie optique cohérente (OCT). Des premières mesures de déphasage sont présentées dans cette thèse. / Spectrometry is an analytical method to access the composition and structure of the matter. Spectrometers are used in many fields. For reasons of space and mobility, many development are made to decrease the size of these spectrometers. This thesis presents the realization and characterization of a Fourier spectrometer in glass integrated optics called LLIFTS (Leaky Loop Integrated Fourier Transform Spectrometer). It uses the coupling of a plane waveguide with a bend waveguide to obtain a Fourier interferogram. Characterizations in the near infrared and visible domain were made. A spectral resolution of 7 nm (R = 221) between 1500nm and 1600nm and 3 (R = 260) 4 nm (R = 221) between 700nm and 900nm is obtained. The Fourier spectrometer developed in this thesis allows to obtain spectral resolution equivalent to other existing compact spectrometers but with an easier realisation. The measurement of the Fourier interferogram allows to detect phase changes between the two waves. So the LLIFTS can be used for applications such as optical coherence tomography (OCT). The first measurements of phase shift are presented in this thesis.
7

Design And Analysis Of Integrated Optic Resonators For Biosensing Applications

Malathi, S 12 1900 (has links) (PDF)
In this thesis, we have designed and optimized strip waveguide based micro-ring and micro-ring and micro-racetrack resonators for biosensing applications. Silicon-On-Insulator (SOI) platform which offers several advantages over other materials such as Lithium Niobate, Silica on Silicon and Silicon nitride is considered here. High index contrast enables us to miniaturize the biosensor devices and monolithic integration of source and detectors on the same chip. We have considered the dispersive nature of the waveguide and proceeded towards optimization. Finite difference schemes and Finite Difference Time Domain (FDTD) methods are the primary tools used to model the biosensor. Various structures such as channel waveguides and beam structures are analyzed on the basis of their suitability for sensing applications. Strip and Rib waveguides are the two geometries considered in our studies. In an optical guiding structure, effective index of the propagating optical mode can be induced by two different phenomena: i. Homogeneous Sensing In this category, effective index of a propagating optical mode changes with uniformly distributed analytes extending over a distance well exceeding the evanescent field penetration depth. The sample serves as the waveguide cover. ii. Surface Sensing In the case of surface sensing, analytes bound to the surface of the waveguide. The effective index of an optical mode changes with the refractive index as well as the thickness of an adlayer. A thin layer of adsorbed or bound molecules transported from liquid or gaseous medium serving as waveguide cover is referred as an adlayer. Both homogeneous and surface sensing schemes are addresses in this work. By bulk sensing method, the characteristics of bioclad covering the device are studied. Optimization of the resonator structure involves the analysis of following parameters: • Gap between the ring and bus waveguides • Free spectral range • Extinction ratio • Quality factor We have achieved a maximum bulk sensitivity of 115 nm / RIU with ring waveguide width of 450 nm and bus width of 350 nm which is better than an earlier reported value of 70 nm/ RIU. We have proposed a novel detection scheme consisting of a micro-racetrack resonator formed over a cantilever structure. The devoice works on the principle of opto-mechanical coupling to detect conformational changes due to biomolecular adherence. BSA (Bovine Serum Albumin) and IgG ( Immuno Globulin G) are the two proteins considered in the work. Mechanical analysis of the beam for tensile and compressive stresses and corresponding spectral responses of the racetrack resonators are analyzed both by semi-analytical and method and numerical analyzes. We compared various aspects of rib and strip waveguide racetrack resonators. We have proved by numerical simulation, that the device is capable of distinguishing tensile and compressive stress. Two strip waveguides of dimensions : 450 nm X 220 nm and 400 nm X 180 nm, former supporting both Quasi-TE and Quasi-TM modes where as the second configuration allows only Quasi-TE mode alone. Sensitivity of the cantilever sensor is : 0.3196 x 10-3 nm/ µɛ at 1550 nm wavelength.
8

Composants actifs en optique intégrée pour l'interférométrie stellaire dans le moyen infrarouge / Active integrated optical devices for mid-infrared stellar interferometry

Heidmann, Samuel 19 December 2013 (has links)
L'observation d'exoplanètes et plus généralement de l'environnement proche de jeunes étoiles représente une double difficulté observationnelle : la faible séparation angulaire entre l'étoile et la planète (ou son environnement tel qu'un disque protoplanétaire) et le contraste de flux. L'une des techniques permettant de surmonter ces difficultés est l'interférométrie en frange noire. Deux télescopes pointent un système étoile planète/disque et les pupilles sont recombinées de telle manière que les photons issus de l'étoile interfèrent destructivement alors que ceux issus de la planète/disque interfèrent constructivement. Les contraintes instrumentales sont très fortes pour garantir une extinction suffisante de l'étoile, tant en terme de différence de marche optique (de l'ordre du nanomètre) que d'équilibre photométrique (4% minimum pour obtenir un taux d'extinction de 40dB). La bande L (3.4 - 4.1μm) est adaptée à l'observation de matière froide, car le rapport de flux entre la planète (ou poussière stellaire) et son étoile présente un minimum de l'ordre de 10−4 après 3μm, ce qui rend la bande L particulièrement attractive pour ce genre d'observations. Parce que les silicates et le verre ne permettent pas de construire des guides atteignant la bande L, il n'existe pas aujourd'hui d'instrument mature fonctionnant dans cette bande en optique intégrée. En effet, les contraintes instrumentales concernant l'interférométrie annulante peuvent être relaxées en utilisant un interféromètre intégré monomode, grâce au filtrage modal. Un instrument interférométrique intégré en bande L serait donc le bienvenu, mais cela nécessite un effort technologique de développement pour mettre au point une méthode de production de guides monomodes en bande L ainsi que de recombineurs intégrés. Mon travail de thèse a consisté à développer de tels guides d'onde ainsi que des recombineurs permettant d'obtenir un taux d'extinction de 10−4 sur la bande L. Le matériau choisi est le Niobate de Lithium (LiNbO3) dont la transparence en infrarouge moyen en fait un parfait candidat. Nous avons utilisé deux méthodes pour fabriquer les guides : l'échange protonique et la diffusion de Titane. Cette dernière méthode permet de guider les deux polarisations T E et T M . Comme le Niobate de Lithium est électro-optique, nous avons aussi travaillé à piloter le retard de phase entre les voies interférométriques de manière intégrée, sans pièce mécanique mobile, en appliquant un champ électrique au niveau du guide via des électrodes "on chip". L'effet électro-optique nous permet non seulement de faire varier la différence de marche entre les voies mais aussi de régler l'équilibre photométrique, ouvrant la voie à la réalisation d'un interféromètre intégré complet, léger, compact et robuste. J'ai donc cherché à caractériser et optimiser l'efficacité électro-optique du système afin d'obtenir une tension de commande inférieure à 15V. Le résultat est un interféromètre de type Y présentant deux Mach-Zehnders en entrée pour le réglage des photométries et offrant un taux d'extinction de 33dB en lumière monochromatique à 3.39μm. Le pilotage électro-optique étant très rapide (> MHz), il devient alors possible de compenser les perturbations de phase induites par l'atmosphère (1kHz) en temps réel. Nous avons ainsi travaillé à construire un démonstrateur qui permet de compenser des retards de phases de l'ordre du kHz sans pièce mobile, garantissant, à 3.39μm, une différence de marche de l'ordre de 3nm. Nous avons aussi réalisé des coupleurs directionnels dont le taux de couplage peut être modulé via une tension de commande. L'application directe de cette technologie est un composant interférométrique 2TABCD ou 3TAC dont les défauts (déséquilibre des coupleurs) peuvent être corrigés par calibration. / The observation of exoplanets and more generally of the close environment of young stars represents an observational double difficulty : the small angular separation between the star and the planet (or its environment such as a protoplanetary disk) and contrast flux. One technique to overcome these difficulties is the nulling interferometry. Two telescopes target a star planet/disk system and the pupils are recombined in such a way that the photons from the star cause destructive interference while those from the planet/disk cause constructive interference. Instrumental constraints are very strong to ensure sufficient extinction of the star, both in terms of optical path difference (of the order of nanometers) than photometric balance (4% for a minimum extinction ratio 40dB). L-band (3.4-4.1μm) is adapted to the observation of cold matter, because the flux ratio between the planet (or star dust) and the star presents a minimum of 10−4 order after 3μm, making the L-band particularly attractive for such observations. Because silicates and glass are not suitable to build guides reaching the L-band, there is currently no mature instrument in this band in integrated optics. Indeed, instrumental constraints on nulling interferometry can be relaxed by using a single-mode interferometer integrated, thanks to modal filtering. An interferometric instrument integrated L-band would be more than welcome, but needs a technology development effort to develop a method of producing L-band single-mode guides as well as integrated beam combiners. My PhD work was to develop such single mode waveguides as well as beam combiners in order to ob- tain an extinction ratio of 10−4 in the L-band. The selected material is lithium niobate (LiNbO3), the mid-infrared transparency makes it a perfect candidate. We used two methods to make the guides : proton exchange and Titanium diffusion. This latter allows to guide both TE and TM polarizations. As Lithium Niobate is electro-optic, we also worked to internally control the phase delay between channels without mobile mechanical part, applying an electric field at the guide via electrodes "on chip". The electro-optical effect allows us to not only vary the optical path delay between channels but also to settle the photometric balance, paving the way towards the realization of an integrated complete interferometer, lightweight, compact and robust. I therefore sought to characterize and optimize the electro-optical efficiency of the system to obtain a command voltage lower than 15V. The result is a "Y" interferometer presenting two Mach-Zehnders as input for photometric adjustment and offering an extinction ratio of 33dB in monochromatic light (3.39μm). Because the electro-optical drive is very fast (> MHz), it becomes possible to compensate for the phase perturbations induced by the atmosphere (1kHz) in real time. We have worked to build a demonstrator which compensates phase delays of the order of kHz without mechanical mobile part and which guarantees, at 3.39μm, an optical path delay around 3nm. We also realized directional couplers whose coupling ratio can be adjusted via a control voltage. The direct application of this technology is an interferometric component 2TABCD or 3TAC whose defects (unbalanced couplers) can be electrically corrected by calibration.
9

Design, Analysis And Testing Of A Fiber Optic Gyroscope On All-Fiber Approach

Nayak, Jagannath 10 1900 (has links) (PDF)
No description available.
10

Projeto, modelagem e fabricação de guias de onda ópticos integrados baseados em polímeros para aplicações em sensores / not available

Lima, Juliano Alves de 18 November 2002 (has links)
Este trabalho visa o projeto, modelagem e fabricação de estruturas multicamadas baseadas em polímeros para aplicações como sensores ópticos integrados. A grande motivação para este trabalho está no fato de que estas estruturas, diferente da geometria Mach-Zehnder, dispensam o uso de litografia pois são completamente planares. Isto permite uma diminuição no custo de fabricação dos dispositivos além de permitir que estruturas mais curtas sejam utilizadas. Em se tratando de óptica integrada, as dimensões reduzidas da estrutura impõem severas penalidades no processo de lançamento de potência óptica na mesma. Por isso, será considerada neste estudo a utilização de prismas para o acoplamento de entrada do acoplador. Esta técnica, além de reduzir drasticamente os problemas de alinhamento decorrentes de acoplamento convencional do tipo \"End Fire\", permite uma transferência de potência óptica superior a 80% entre a fibra e o guia retangular. As variações na transferência de potência entre os guias de ondas da estrutura multicamada serão medidas através de um fotodetetor MSM integrado ao sensor. Este detetor, além de sua extrema facilidade de fabricação e baixos custos, torna o conjunto sensor mais robusto. Em se tratando de uma proposta de plataforma para sensores, serão também investigadas possíveis aplicações para esta estrutura, como por exemplo: refratômetro integrado, sensor de glicose, sensor de adulteração de combustível, etc. A análise das estruturas será efetuada por meio de técnicas de modelagem analíticas (Técnica da Matriz de Transferência - TMT e Teoria de Modos Acoplados - TMA), e numéricas (Método da Propagação de Feixe de Ângulo Largo formulado em Diferenças Finitas - WA-FD-BPM). Esta última permite que a estrutura do fotodetetor seja levada em consideração simultaneamente nas simulações. / This work concerns with design, modeling and fabrication of polymer based planar multilayer structures for integrated optic sensor applications. The motivation for this work is that planar multilayer structures, differently from the Mach-Zehnder geometry, do not require a lithographic process. As a consequence, significantly cheaper and shorter structures can be realized. The reduced dimensions of the structure, by its turn, pose a severe penalty in terms of optical power coupling. Therefore, this investigation will focus primarily on input (and output) prism coupling configuration. This technique, besides reducing the alignment requirements observed for conventional end-fire coupling, allows optical power coupling efficiency as high as 80% from fiber to rectangular waveguide. Any optical power transfer between the waveguides of the multilayer structure will be detected by an MSM photodetector integrated with the sensor. This low cost photodetector, besides improving the structure robustness, is quite ease to fabricate. Since the idea of this work is to develop a platform for integrated optic sensors, it will also be investigated possible applications for this structure, such as: integrated optic refractometer, glucose sensor and fuel adulteration sensor. The analysis of such structures will be carried out by means of analythical (Transfer Matrix Technique-TMT and Coupled Mode Theory-CMT) and numerical (Wide-Angle Finite Difference Beam Propagation Method-WA-FD-BPM) modeling techniques. The WA-FD-BPM technique allows one to simulate the multilayer waveguide and the MSM photodetector simultaneously.

Page generated in 0.4701 seconds