Spelling suggestions: "subject:"intelligent data analysis"" "subject:"lntelligent data analysis""
1 |
Characterization of components of water supply systems from GPR images and tools of intelligent data analysisAyala Cabrera, David 29 December 2015 (has links)
[EN] Over time, due to multiple operational and maintenance activities, the networks of water supply systems (WSSs) undergo interventions, modifications or even are closed. In many cases, these activities are not properly registered. Knowledge of the paths and characteristics (status and age, etc.) of the WSS pipes is obviously necessary for efficient and dynamic management of such systems. This problem is greatly augmented by considering the detection and control of leaks. Access to reliable leakage information is a complex task. In many cases, leaks are detected when the damage is already considerable, which brings high social and economic costs. In this sense, non-destructive methods (e.g., ground penetrating radar - GPR) may be a constructive response to these problems, since they allow, as evidenced in this thesis, to ascertain paths of pipes, identify component characteristics, and detect primordial water leaks. Selection of GPR in this work is justified by its characteristics as non-destructive technique that allows studying both metallic and non-metallic objects. Although the capture of information with GPR is usually successful, such aspects as the capture settings, the large volume of generated information, and the use and interpretation of such information require high level of skill and experience.
This dissertation may be seen as a step forward towards the development of tools able to tackle the problem of lack of knowledge on the WSS buried assets. The main objective of this doctoral work is thus to generate tools and assess their feasibility of application to the characterization of components of WSSs from GPR images.
In this work we have carried out laboratory tests specifically designed to propose, develop and evaluate methods for the characterization of the WSS buried components. Additionally, we have conducted field tests, which have enabled us to determine the feasibility of implementing such methodologies under uncontrolled conditions. The methodologies developed are based on techniques of intelligent data analysis. The basic principle of this work has involved the processing of data obtained through the GPR to look for useful information about WSS components, with special emphasis on the pipes.
After performing numerous activities, one can conclude that, using GPR images, it is feasible to obtain more information than the typical identification of hyperbolae currently performed. In addition, this information can be observed directly, e.g. more simply, using the methodologies proposed in this doctoral work. These methodologies also prove that it is feasible to identify patterns (especially with the preprocessing algorithm termed Agent race) that provide fairly good approximation of the location of leaks in WSSs. Also, in the case of pipes, one can obtain such other characteristics as diameter and material.
The main outcomes of this thesis consist in a series of tools we have developed to locate, identify and visualize WSS components from GPR images. Most interestingly, the data are synthesized and reduced so that the characteristics of the different components of the images recorded in GPR are preserved. The ultimate goal is that the developed tools facilitate decision-making in the technical management of WSSs, and that such tools can even be operated by personnel with limited experience in handling non-destructive methodologies, specifically GPR. / [ES] Con el paso del tiempo, y debido a múltiples actividades operacionales y de mantenimiento, las redes de los sistemas de abastecimiento de agua (SAAs) sufren intervenciones, modificaciones o incluso, son clausuradas, sin que, en muchos casos, estas actividades sean correctamente registradas. El conocimiento de los trazados y características (estado y edad, entre otros) de las tuberías en los SAAs es obviamente necesario para una gestión eficiente y dinámica de tales sistemas. A esta problemática se suma la detección y el control de las fugas de agua. El acceso a información fiable sobre las fugas es una tarea compleja. En muchos casos, las fugas son detectadas cuando los daños en la red son ya considerables, lo que trae consigo altos costes sociales y económicos. En este sentido, los métodos no destructivos (por ejemplo, ground penetrating radar - GPR), pueden ser una respuesta a estas problemáticas, ya que permiten, como se pone de manifiesto en esta tesis, localizar los trazados de las tuberías, identificar características de los componentes y detectar las fugas de agua cuando aún no son significativas. La selección del GPR, en este trabajo se justifica por sus características como técnica no destructiva, que permite estudiar tanto objetos metálicos como no metálicos. Aunque la captura de información con GPR suele ser exitosa, la configuración de la captura, el gran volumen de información, y el uso y la interpretación de la información requieren de alto nivel de habilidad y experiencia por parte del personal.
Esta tesis doctoral se plantea como un avance hacia el desarrollo de herramientas que permitan responder a la problemática del desconocimiento de los activos enterrados de los SAAs. El objetivo principal de este trabajo doctoral es, pues, generar herramientas y evaluar la viabilidad de su aplicación en la caracterización de componentes de un SAA, a partir de imágenes GPR.
En este trabajo hemos realizado ensayos de laboratorio específicamente diseñados para plantear, elaborar y evaluar metodologías para la caracterización de los componentes enterrados de los SAAs. Adicionalmente, hemos realizado ensayos de campo, que han permitido determinar la viabilidad de aplicación de tales metodologías bajo condiciones no controladas. Las metodologías elaboradas están basadas en técnicas de análisis inteligentes de datos. El principio básico de este trabajo ha consistido en el tratamiento adecuado de los datos obtenidos mediante el GPR, a fin de buscar información de utilidad para los SAAs respecto a sus componentes, con especial énfasis en las tuberías.
Tras la realización de múltiples actividades, se puede concluir que es viable obtener más información de las imágenes de GPR que la que actualmente se obtiene con la típica identificación de hipérbolas. Esta información, además, puede ser observada directamente, de manera más sencilla, mediante las metodologías planteadas en este trabajo doctoral. Con estas metodologías se ha probado que también es viable la identificación de patrones (especialmente el pre-procesado con el algoritmo Agent race) que proporcionan aproximación bastante acertada de la localización de las fugas de agua en los SAAs. También, en el caso de las tuberías, se puede obtener otro tipo de características tales como el diámetro y el material.
Como resultado de esta tesis se han desarrollado una serie de herramientas que permiten visualizar, identificar y localizar componentes de los SAAs a partir de imágenes de GPR. El resultado más interesante es que los resultados obtenidos son sintetizados y reducidos de manera que preservan las características de los diferentes componentes registrados en las imágenes de GPR. El objetivo último es que las herramientas desarrolladas faciliten la toma de decisiones en la gestión técnica de los SAAs y que tales herramientas puedan ser operadas incluso por personal con una experiencia limitada en el manejo / [CA] Amb el temps, a causa de les múltiples activitats d'operació i manteniment, les xarxes de sistemes d'abastament d'aigua (SAAs) se sotmeten a intervencions, modificacions o fins i tot estan tancades. En molts casos, aquestes activitats no estan degudament registrats. El coneixement dels camins i característiques (estat i edat, etc.) de les canonades d'aigua i sanejament fa evident la necessitat d'una gestió eficient i dinàmica d'aquests sistemes. Aquest problema es veu augmentat en gran mesura tenint en compte la detecció i control de fuites. L'accés a informació fiable sobre les fuites és una tasca complexa. En molts casos, les fugues es detecten quan el dany ja és considerable, el que porta costos socials i econòmics. En aquest sentit, els mètodes no destructius (per exemple, ground penetrating radar - GPR) poden ser una resposta constructiva a aquests problemes, ja que permeten, com s'evidencia en aquesta tesi, per determinar rutes de canonades, identificar les característiques dels components, i detectar les fuites d'aigua quan encara no són significatives. La selecció del GPR en aquest treball es justifica per les seves característiques com a tècnica no destructiva que permet estudiar tant objectes metàl·lics i no metàl·lics. Tot i que la captura d'informació amb GPR sol ser reeixida, aspectes com ara la configuració de captura, el gran volum d'informació que es genera, i l'ús i la interpretació d'aquesta informació requereix alt nivell d'habilitat i experiència.
Aquesta tesi pot ser vista com un pas endavant cap al desenvolupament d'eines capaces d'abordar el problema de la manca de coneixement sobre els actius d'aigua i sanejament enterrat. L'objectiu principal d'aquest treball doctoral és, doncs, generar eines i avaluar la seva factibilitat d'aplicació a la caracterització dels components de los SAAs, a partir d'imatges GPR.
En aquest treball s'han dut a terme proves de laboratori específicament dissenyats per proposar, desenvolupar i avaluar mètodes per a la caracterització dels components d'aigua i sanejament soterrat. A més, hem dut a terme proves de camp, que ens han permès determinar la viabilitat de la implementació d'aquestes metodologies en condicions no controlades. Les metodologies desenvolupades es basen en tècniques d'anàlisi intel·ligent de dades. El principi bàsic d'aquest treball ha consistit en el tractament de dades obtingudes a través del GPR per buscar informació útil sobre els components d'SAA, amb especial èmfasi en la canonades.
Després de realitzar nombroses activitats, es pot concloure que, amb l'ús d'imatges de GPR, és factible obtenir més informació que la identificació típica d'hipèrboles realitzat actualment. A més, aquesta informació pot ser observada directament, per exemple, més simplement, utilitzant les metodologies proposades en aquest treball doctoral. Aquestes metodologies també demostren que és factible per identificar patrons (especialment el pre-processat amb l'algoritme Agent race) que proporcionen bastant bona aproximació de la localització de fuites en SAAs. També, en el cas de tubs, es pot obtenir altres característiques com ara el diàmetre i el material.
Els principals resultats d'aquesta tesi consisteixen en una sèrie d'eines que hem desenvolupat per localitzar, identificar i visualitzar els components dels SAAS a partir d'imatges GPR. El resultat més interessant és que els resultats obtinguts són sintetitzats i reduïts de manera que preserven les característiques dels diferents components registrats en les imatges de GPR. L'objectiu final és que les eines desenvolupades faciliten la presa de decisions en la gestió tècnica de SAA, i que tals eines poden fins i tot ser operades per personal amb poca experiència en el maneig de metodologies no destructives, específicament GPR. / Ayala Cabrera, D. (2015). Characterization of components of water supply systems from GPR images and tools of intelligent data analysis [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/59235 / Premios Extraordinarios de tesis doctorales
|
2 |
Enhancing association rules algorithms for mining distributed databases : integration of fast BitTable and multi-agent association rules mining in distributed medical databases for decision supportAbdo, Walid Adly Atteya January 2012 (has links)
Over the past few years, mining data located in heterogeneous and geographically distributed sites have been designated as one of the key important issues. Loading distributed data into centralized location for mining interesting rules is not a good approach. This is because it violates common issues such as data privacy and it imposes network overheads. The situation becomes worse when the network has limited bandwidth which is the case in most of the real time systems. This has prompted the need for intelligent data analysis to discover the hidden information in these huge amounts of distributed databases. In this research, we present an incremental approach for building an efficient Multi-Agent based algorithm for mining real world databases in geographically distributed sites. First, we propose the Distributed Multi-Agent Association Rules algorithm (DMAAR) to minimize the all-to-all broadcasting between distributed sites. Analytical calculations show that DMAAR reduces the algorithm complexity and minimizes the message communication cost. The proposed Multi-Agent based algorithm complies with the Foundation for Intelligent Physical Agents (FIPA), which is considered as the global standards in communication between agents, thus, enabling the proposed algorithm agents to cooperate with other standard agents. Second, the BitTable Multi-Agent Association Rules algorithm (BMAAR) is proposed. BMAAR includes an efficient BitTable data structure which helps in compressing the database thus can easily fit into the memory of the local sites. It also includes two BitWise AND/OR operations for quick candidate itemsets generation and support counting. Moreover, the algorithm includes three transaction trimming techniques to reduce the size of the mined data. Third, we propose the Pruning Multi-Agent Association Rules algorithm (PMAAR) which includes three candidate itemsets pruning techniques for reducing the large number of generated candidate itemsets, consequently, reducing the total time for the mining process. The proposed PMAAR algorithm has been compared with existing Association Rules algorithms against different benchmark datasets and has proved to have better performance and execution time. Moreover, PMAAR has been implemented on real world distributed medical databases obtained from more than one hospital in Egypt to discover the hidden Association Rules in patients' records to demonstrate the merits and capabilities of the proposed model further. Medical data was anonymously obtained without the patients' personal details. The analysis helped to identify the existence or the absence of the disease based on minimum number of effective examinations and tests. Thus, the proposed algorithm can help in providing accurate medical decisions based on cost effective treatments, improving the medical service for the patients, reducing the real time response for the health system and improving the quality of clinical decision making.
|
3 |
Enhancing association rules algorithms for mining distributed databases. Integration of fast BitTable and multi-agent association rules mining in distributed medical databases for decision support.Abdo, Walid A.A. January 2012 (has links)
Over the past few years, mining data located in heterogeneous and geographically distributed sites have been designated as one of the key important issues. Loading distributed data into centralized location for mining interesting rules is not a good approach. This is because it violates common issues such as data privacy and it imposes network overheads. The situation becomes worse when the network has limited bandwidth which is the case in most of the real time systems. This has prompted the need for intelligent data analysis to discover the hidden information in these huge amounts of distributed databases.
In this research, we present an incremental approach for building an efficient Multi-Agent based algorithm for mining real world databases in geographically distributed sites. First, we propose the Distributed Multi-Agent Association Rules algorithm (DMAAR) to minimize the all-to-all broadcasting between distributed sites. Analytical calculations show that DMAAR reduces the algorithm complexity and minimizes the message communication cost. The proposed Multi-Agent based algorithm complies with the Foundation for Intelligent Physical Agents (FIPA), which is considered as the global standards in communication between agents, thus, enabling the proposed algorithm agents to cooperate with other standard agents.
Second, the BitTable Multi-Agent Association Rules algorithm (BMAAR) is proposed. BMAAR includes an efficient BitTable data structure which helps in compressing the database thus can easily fit into the memory of the local sites. It also includes two BitWise AND/OR operations for quick candidate itemsets generation and support counting. Moreover, the algorithm includes three transaction trimming techniques to reduce the size of the mined data.
Third, we propose the Pruning Multi-Agent Association Rules algorithm (PMAAR) which includes three candidate itemsets pruning techniques for reducing the large number of generated candidate itemsets, consequently, reducing the total time for the mining process.
The proposed PMAAR algorithm has been compared with existing Association Rules algorithms against different benchmark datasets and has proved to have better performance and execution time. Moreover, PMAAR has been implemented on real world distributed medical databases obtained from more than one hospital in Egypt to discover the hidden Association Rules in patients¿ records to demonstrate the merits and capabilities of the proposed model further. Medical data was anonymously obtained without the patients¿ personal details. The analysis helped to identify the existence or the absence of the disease based on minimum number of effective examinations and tests. Thus, the proposed algorithm can help in providing accurate medical decisions based on cost effective treatments, improving the medical service for the patients, reducing the real time response for the health system and improving the quality of clinical decision making.
|
Page generated in 0.0942 seconds