• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fast Electron Transport Study for Inertial Confinement Fusion / Etude du transport d'électrons Rapides pour la fusion par confinement inertiel

Touati, Michaël 10 June 2015 (has links)
Un nouveau mod`ele r´eduit pour le transport de faisceaux d’´electrons relativistes dans des solide ou des plasma denses est propos´e. Il est bas´e sur la r´esolution des deux premiers moments angulaires de l’´equation cin´etique relativiste, compl´et´es par une relation de fermeture d´eduite du principe de maximisation de l’entropie angulaire de Minerbo. Le mod`ele prend en compte aussi bien les effets collectifs du transport avec les champs ´electromagn´etiques auto g´en´er´es que les effets collisionnels li´es au ralentissement des ´electrons par collision sur les plasmons, les ´electrons li´es et les ´electrons libres du milieu ainsi que leur diffusion angulaire par collisions sur les ´electrons et les ions. Le mod`ele permet une r´esolution num´erique rapide des ´equations du transport de faisceau d’´electrons rapides tout en d´ecrivant l’´evolution cin´etique de leur fonction de distribution. Malgr´e le fait de travailler avec les grandeurs angulaires moyennes, le mod`ele a ´et´e valid´e par comparaison avec des solutions analytiques d´eriv´ees dans un cas acad´emique de transport de faisceau mono ´energ´etique et collimat´e dans un plasma dense et chaud d’Hydrog`ene ainsi qu’avec une simulation PIC hybride dans un cas r´ealiste de transport d’´electrons acc´el´er´es par laser dans une cible solide. Le mod`ele est appliqu´e `a l’´etude de l’´emission de photons Kα lors d’exp´eriences laser-plasma ainsi qu’a` la g´en´eration d’ondes de choc. / A new hybrid reduced model for relativistic electron beam transport in solids and dense plasmas is presented. It is based on the two first angular moments of the relativistic kinetic equation completed with the Minerbo maximum angular entropy closure. It takes into account collective effects with the self-generated electromagnetic fields as well as collisional effects with the slowing down of the elec- trons in collisions with plasmons, bound and free electrons and their angular scattering on both ions and electrons. This model allows for fast computations of relativistic electron beam transport while describing the kinetic distribution function evolution. Despite the loss of information concerning the angular distribution of the electron beam, the model reproduces analytical estimates in the academic case of a collimated and monoenergetic electron beam propagating through a warm and dense Hydro- gen plasma and hybrid PIC simulation results in a realistic laser-generated electron beam transport in a solid target. The model is applied to the study of the emission of Kα photons in laser-solid experiments and to the generation of shock waves.
2

Laser à rayons X ultra-compact Raman XFEL / Ultra-compact X-ray free electron laser Raman XFEL

Hadj-Bachir, Mokrane 15 December 2016 (has links)
L’obtention d’un Laser à Électrons Libres X (LEL-X) compact est un objectif majeur pour le développement des lasers. Plusieurs schémas prometteurs de LEL-X ont été proposés en utilisant à la fois l’accélération d’électrons dans les plasmas et des onduleurs optiques en régime Compton ou Compton inverse. Nous avons proposé un nouveau concept de LEL-X compact baptisé Raman XFEL, en combinant la physique des LEL en régime Compton, des lasers XUV conventionnels basés sur l’interaction laser plasma, et de l’optique non-linéaire. Nous étudions dans cette thèse les étapes préalables pour déclencher un effet laser à rayons X lors de l’interaction entre un paquet d’électrons libres relativistes et un réseau optique créé par l’interférence transverse de deux impulsions laser intenses. Dans cet objectif j’ai développé un code particulaire baptisé RELIC. Les études menées avec le code RELIC nous ont permis d’étudier la dynamique d’électrons relativistes et les processus d’injection du paquet d’électrons dans le réseau optique. Grâce à RELIC, nous avons distingué de nouveaux régimes d’interaction en fonction des paramètres du paquet d’électrons, ainsi que de la géométrie du réseau optique. Ces études ont été appliquées à l’amplification du rayonnement X et appuyées par des simulations PIC. RELIC a également permis de modéliser et d’analyser la première expérience réalisée en octobre 2015 sur l’installation laser ’Salle Jaune’ au Laboratoire d’Optique Appliquée (LOA). Cette première expérience a été une étape très importante pour la validation des modèles théoriques, et pour la réalisation future d’un laser à électrons libre X Raman. / The quest for a compact X-ray laser has long been a major objective of laser science. Several schemes using optical undulators are currently considered, in order to trigger the amplification of back scattered radiation, in Compton or inverse Compton regime. We have proposed a new concept of compact XFEL based on a combination between the physics of free electron lasers, of laser-plasma interactions, and of nonlinear optics. In this thesis, we study the necessary steps to trigger a X-ray laser during the interaction between a free relativistic electron bunch and an optical lattice created by the interference of two intense transverse laser pulses. For this purpose I developed a particular tracking code dubbed RELIC. RELIC allowed us to study the dynamics and injection process of a bunch of relativistic electrons into the optical lattice. Thanks to RELIC, we distinguished several interaction regimes depending on the relativistic electron bunch parameters, and on those of the optical lattice and its geometry. These studies are applied to the X ray amplification and supported by PIC simulations. RELIC also allowed us to model and analyze the first experiment conducted in october 2015 on the ”Salle Jaune” laser facility at LOA. This first experiment was very important to validate our theoretical models, and should prove to be an essential milestone for the development of a Raman X-ray free electron laser.
3

Étude expérimentale du guidage du faisceau d’électrons dans le cadre de l’allumage rapide de cibles de fusion

Beaucourt-Jacquet, Céline 19 December 2012 (has links)
Les travaux de cette thèse s’inscrivent dans le cadre de l’allumage rapide pour la fusion par confinement inertiel (FCI), pour la production d’énergie. Dans ce schéma les phases de compression et d’allumage sont découplées. Au cours de la seconde phase, le faisceau d’électrons doit parcourir une distance de 300 µm dans le combustible dense avantde déposer son énergie au coeur de la cible et d’initier les réactions de fusion. Le principal défaut de ce schéma réside dans la divergence du faisceau d’électrons au cours de son transport dans la matière dense. Parmi plusieurs schémas proposés pour réduire cette divergence, nous considérons ici, les schémas sans cône basés sur la collimation des électrons dans un champ magnétique. En particulier, A.P.L. Robinson et ses collaborateurs [Phys. Rev. Lett. 100, 025002, 2008] ont proposé une méthode simple à mettre en place pour contrôler la divergence du faisceau d’électrons :utiliser une séquence de deux impulsions laser. La première impulsion permet de créer un environnement magnétique favorable au confinement du faisceau d’électrons engendré par la seconde interaction. La validation de cette proposition est le sujet de cette thèse. Nous présenterons les résultats expérimentaux et les modélisations théoriques motivées par cette proposition. L’expérience du guidage d’un faisceau d’électrons avec deux impulsions laser a été réalisée sur l’installation laser petawatt Vulcan au Rutherford Appleton Laboratory (RAL) à Didcot en Angleterre. Elle est basée sur la proposition d’un groupe international dans le cadre du projet FCI HiPER. Cette expérience nous a permis d’obtenir les conditions de guidage en fonction du rapport des intensités et du délai entre les deux impulsions. Les résultats de l’expérience ont été modélisés par le code hydrodynamique CHIC couplé au module de transport de particules chargées M1. L’interprétation des résultats expérimentaux nous a permis d’expliquer la base de la physique du guidage du faisceau d'électrons et d'en définir les conditions magnétiques favorables. / The work presented in this thesis is realised in the framework of the fast ignition of inertial confinement fusion for energy production. In this scheme the compression and the ignition phases are decoupled. During the second phase, the electron beam must cross over 300 µm in the dense fuel to deposit its energy in the dense core and ignite the fusion reactions.The major problem of the scheme is related to the divergence of the electron beam while it crosses the dense matter. Among the different propositions to inhibit the electron divergence we consider here the schemes without cone that are based on the effect of magnetic collimation. In particular, A.P.L. Robinson and his co-authors [Phys. Rev. Lett. 100, 025002, 2008] suggested a simple way to control the electron beam divergence by using a sequence of two laser pulses. The first one creates a magnetic background favourable for the confinement of the second electron beam resulting from the second interaction. The validation of this scheme is the major goal of this thesis.We present the results of experimental sudies and numerical modeling of the electron beam guiding with help of two consequent laser pulses. The experiment was performed on the Vulcan facility at the Rutherford Appleton Laboratory at Didcot in UK, based on the proposal submitted by an international group of scientists in the framework of the European project for inertial fusion energy HiPER. This experiment allowed us to define a combination of laser and target parameters where the electron beam guiding takes place. The analysis of experimental data and numerical modelling is realised with the hydrodynamic code CHIC coupled to the charged particules transport module M1. The interpretation of the experimental results allowed us to explain the experimental data and the physical basis of guiding and to define the magnetic conditionflavourable to the electron beam guidance.
4

Étude expérimentale du transport d'électrons rapides dans le cadre de l'allumage rapide pour la fusion inertielle

Vauzour, Benjamin 08 March 2012 (has links)
Cette thèse s'inscrit dans le cadre de la recherche sur la fusion nucléaire par confinement inertiel, et vise notamment à contribuer à la validation du schéma d'allumage rapide. Elle consiste en une étude expérimentale des différents processus impliqués dans la propagation d'un faisceau d'électrons relativistes, produit par une impulsion laser ultra-intense (10^{19} W.cm-2), au sein de la matière dense qu'elle soit solide ou comprimée. Dans ce travail de recherche nous présentons les résultats de trois expériences réalisées sur des installations laser distinctes afin de générer des faisceaux d'électrons dans diverses conditions et d'étudier leur propagation dans différents états de la matière, du solide froid au plasma dense et tiède.La première expérience a été réalisée à très haut contraste temporel sur l'installation laser UHI100 du CEA de Saclay. L'étude du dépôt d'énergie par le faisceau d'électrons dans l'aluminium solide a mis en évidence un important chauffage à faible profondeur, où les effets collectifs sont prédominants, générant ainsi un gradient important de température entre les faces avant (300eV) et arrière (20eV) sur 20µm d'épaisseur. Une modélisation numérique de l'expérience montre que ce gradient induit la formation d'une onde de choc débouchant en face arrière, donnant alors lieu à une augmentation de l'émission thermique. La chronométrie expérimentale du débouché du choc permet de valider le modèle de transport collectif des électrons.Deux autres expériences ont porté sur l'étude de la propagation de faisceaux d'électrons rapides au sein de cibles comprimées. Lors de la première expérience sur LULI2000 (LULI), la géométrie de compression plane a permis de dissocier de manière précise les pertes d'énergie liées aux effets résistifs de celles liées aux effets collisionnels. En comparant nos résultats expérimentaux à des simulations, nous avons mis en évidence l'augmentation significative des pertes d'énergie du faisceau d'électrons avec la compression et le chauffage de la cible à des température proches de la température de Fermi, et ce, pour les deux mécanismes. La seconde expérience, réalisée en géométrie cylindrique sur Vulcan (RAL), a permis de mettre en évidence un phénomène de guidage du faisceau d'électrons rapides sous l'effet d'un intense champ magnétique, auto-généré en présence d'importants gradients radiaux de résistivité. Par ailleurs, dans les conditions de température et de densité atteintes, l'augmentation des pertes d'énergie collisionnelles avec la densité s'avère être compensée par une diminution des pertes résistives du fait du passage de la conductivité du milieu dans le régime des hautes températures de Spitzer. / The framework of this PhD thesis is the validation of the fast ignition scheme for the nuclear fusion by inertial confinement. It consists in the experimental study of the various processes involved in fast electron beams propagation, produced by intense laser pulses (10^{19} W.cm-2), through dense matter either solid or compressed. In this work we present the results of three experiments carried out on different laser facilities in order to generate fast electron beams in various conditions and study their propagation in different states of matter, from the cold solid to the warm and dense plasma.The first experiment was performed with a high intensity contrast on the UHI100 laser facility (CEA Saclay). The study of fast electron energy deposition inside thin aluminium targets highlights a strong target heating at shallow depths, where the collectivs effects are predominant, thus producing a steep temperature profile between front (300eV) and rear (20eV) sides over 20µm thickness. A numerical simulation of the experiment shows that this temperature gradient induces the formation of a shock wave, breaking through the rear side of the target and thus leading to increase the thermal emission. The experimental chronometry of the shock breakthrough allowed validating the model of the collective transport of electrons.Two other experiments were dedicated to the study of fast electron beam propagation inside compressed targets. In the first experiment on the LULI2000 laser facility, the plane compression geometry allowed to precisely dissociate the energy losses due to resistive effects from those due to the collisional ones. By comparing our experimental results with simulations, we observed a significative increase of the fast electron beam energy losses with the compression and the target heating to temperatures close to the Fermi temperature. The second experiment, performed in a cylindrical geometry, demonstrated a fast electron beam guiding phenomenon due to self-generated magnetic fields in presence of sharp radial resistivity gradients. Furthermore, in the temperature and density conditions achieved here, the increase of collisional energy losses with density is compensated by the decreasing resistive energy losses due to the transition of the conductivity into the high-temperatures Spitzer regime.

Page generated in 0.1544 seconds