• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 14
  • 14
  • 8
  • 8
  • 7
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Méthodes hybrides d'ordre élevé pour les problèmes d'interface / Hybrid high-order methods for interface problems

Chave, Florent 12 November 2018 (has links)
Le but de cette thèse est de développer et d’analyser les méthodes Hybrides d’Ordre Élevé (HHO: Hybrid High-Order, en anglais) pour des problèmes d’interfaces. Nous nous intéressons à deux types d’interfaces (i) les interfaces diffuses, et (ii) les interfaces traitées comme frontières internes du domaine computationnel. La première moitié de ce manuscrit est consacrée aux interfaces diffuses, et plus précisément aux célèbres équations de Cahn–Hilliard qui modélisent le processus de séparation de phase par lequel les deux composants d’un fluide binaire se séparent pour former des domaines purs en chaque composant. Dans la deuxième moitié, nous considérons des modèles à dimension hybride pour la simulation d’écoulements de Darcy et de transports passifs en milieu poreux fracturé, dans lequel la fracture est considérée comme un hyperplan (d’où le terme hybride) qui traverse le domaine computationnel. / The purpose of this Ph.D. thesis is to design and analyse Hybrid High-Order (HHO) methods on some interface problems. By interface, we mean (i) diffuse interface, and (ii) interface as an immersed boundary. The first half of this manuscrit is dedicated to diffuse interface, more precisely we consider the so called Cahn–Hilliard problem that models the process of phase separation, by which the two components of a binary fluid spontaneously separate and form domains pure in each component. In the second half, we deal with the interface as an immersed boundary and consider a hybrid dimensional model for the simulation of Darcy flows and passive transport in fractured porous media, in which the fracture is considered as an hyperplane that crosses our domain of interest.
12

Three-dimensional mathematical Problems of thermoelasticity of anisotropic Bodies

Jentsch, Lothar, Natroshvili, David 30 October 1998 (has links) (PDF)
CHAPTER I. Basic Equations. Fundamental Matrices. Thermo-Radiation Conditions 1. Basic differential equations of thermoelasticity theory 2. Fundamental matrices 3. Thermo-radiating conditions. Somigliana type integral representations CHAPTER II. Formulation of Boundary Value and Interface Problems 4. Functional spaces 5. Formulation of basic and mixed BVPs 6. Formulation of crack type problems 7. Formulation of basic and mixed interface problems CHAPTER III. Uniqueness Theorems 8. Uniqueness theorems in pseudo-oscillation problems 9. Uniqueness theorems in steady state oscillation problems CHAPTER IV. Potentials and Boundary Integral Operators 10. Thermoelastic steady state oscillation potentials 11. Pseudo-oscillation potentials CHAPTER V. Regular Boundary Value and Interface Problems 12. Basic BVPs of pseudo-oscillations 13. Basic exterior BVPs of steady state oscillations 14. Basic interface problems of pseudo-oscillations 15. Basic interface problems of steady state oscillations CHAPTER VI. Mixed and Crack Type Problems 16. Basic mixed BVPs 17. Crack type problems 18. Mixed interface problems of steady state oscillations 19. Mixed interface problems of pseudo-oscillations
13

Mixed Interface Problems of Thermoelastic Pseudo-Oscillations

Jentsch, L., Natroshvili, D., Sigua, I. 30 October 1998 (has links)
Three-dimensional basic and mixed interface problems of the mathematical theory of thermoelastic pseudo-oscillations are considered for piecewise homogeneous anisotropic bodies. Applying the method of boundary potentials and the theory of pseudodifferential equations existence and uniqueness theorems of solutions are proved in the space of regular functions C^(k+ alpha) and in the Bessel-potential (H^(s)_(p)) and Besov (B^(s)_(p,q)) spaces. In addition to the classical regularity results for solutions to the basic interface problems, it is shown that in the mixed interface problems the displacement vector and the temperature are Hölder continuous with exponent 0<alpha<1/2.
14

Three-dimensional mathematical Problems of thermoelasticity of anisotropic Bodies

Jentsch, Lothar, Natroshvili, David 30 October 1998 (has links)
CHAPTER I. Basic Equations. Fundamental Matrices. Thermo-Radiation Conditions 1. Basic differential equations of thermoelasticity theory 2. Fundamental matrices 3. Thermo-radiating conditions. Somigliana type integral representations CHAPTER II. Formulation of Boundary Value and Interface Problems 4. Functional spaces 5. Formulation of basic and mixed BVPs 6. Formulation of crack type problems 7. Formulation of basic and mixed interface problems CHAPTER III. Uniqueness Theorems 8. Uniqueness theorems in pseudo-oscillation problems 9. Uniqueness theorems in steady state oscillation problems CHAPTER IV. Potentials and Boundary Integral Operators 10. Thermoelastic steady state oscillation potentials 11. Pseudo-oscillation potentials CHAPTER V. Regular Boundary Value and Interface Problems 12. Basic BVPs of pseudo-oscillations 13. Basic exterior BVPs of steady state oscillations 14. Basic interface problems of pseudo-oscillations 15. Basic interface problems of steady state oscillations CHAPTER VI. Mixed and Crack Type Problems 16. Basic mixed BVPs 17. Crack type problems 18. Mixed interface problems of steady state oscillations 19. Mixed interface problems of pseudo-oscillations

Page generated in 0.0625 seconds