• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2100
  • 966
  • 656
  • 257
  • 227
  • 212
  • 148
  • 92
  • 84
  • 51
  • 41
  • 34
  • 23
  • 22
  • 21
  • Tagged with
  • 5662
  • 1287
  • 1159
  • 868
  • 841
  • 709
  • 695
  • 473
  • 466
  • 457
  • 359
  • 346
  • 317
  • 295
  • 283
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Lacome: a cross-platform multi-user collaboration system for a shared large display

Liu, Zhangbo 05 1900 (has links)
Lacome is a multi-user cross-platform system that supports collaboration in a shared large screen display environment. Lacome allows users to share their desktops or application windows using any standard VNC server. It supports multi-user concurrent interaction on the public shared display as well as input redirection so users can control each other's applications. La-come supports separate types of interaction through a Lacome client for window management tasks on the shared display(move, resize, iconify, de-iconify) and for application interactions through the VNC servers. The system architecture provides for Publishers that share information and Navigators that access information. A Lacome client can have either or both, and can initiate additional Publishers on other VNC servers that may not be Lacome clients. Explicit access control policies on both the server side the client side provide a flexible framework for sharing. The architecture builds on standard cross-platform components such as VNC and JRE. Interaction techniques used in the window manager ensure simple and transparent multi-user interactions for managing the shared display space. We illustrate the design and implementation of Lacome and provide insights from initial user experience with the system. / Science, Faculty of / Computer Science, Department of / Graduate
212

The Umklapp Scattering and Spin Mixing Conductance in Collinear Antiferromagnets

Alshehri, Nisreen 31 August 2020 (has links)
Antiferromagnetic spintronics is a new promising field in applied magnetism. Antiferromagnetic materials display a staggered arrangement of magnetic moments so that they exhibit no overall magnetization while possessing a local magnetic order. Unlike ferromagnets that possess a homogeneous magnetic order, the spin-dependent phenomena occur locally upon the interaction between the itinerant electron and the localized magnetic moments. In fact, unique spin transport properties such as anisotropic magnetoresistance, anomalous Hall effect, magnetooptical Kerr effect, spin transfer torque and spin pumping have been predicted and observed, proving that antiferromagnetic materials stand out as promising candidates for spin information control and manipulation, and could potentially replace ferromagnets as the active part of spintronic devices. As a matter of fact, owing to their vanishing net magnetization, they produce no parasite stray fields, hence, they are mostly insensitive to external magnetic fields perturbations and displaying ultrafast magnetic dynamics. When a spin current is sent into an antiferromagnet, it experiences spin-dependent scattering, a mechanism that controls the spin transfer torque as well as the spin transmission across the antiferromagnet. The fully compensated antiferromagnetic interfaces are full of intriguing properties. For example, itinerant electron impinging on such an interface experiences a spin-flip associated with the sub-lattices interchange. This process, associated with Umklapp scattering, gives rise to a non-vanishing spin mixing conductance that governs spin transfer torque, spin pumping, and spin transmission. The thesis explores the mechanism of Umklapp scattering at a staggered antiferromagnetic interface and its associated spin mixing conductance. In this project we consider two systems of bilayer and trilayer antiferromagnetic (L-type, G-type) heterostructures. We first study the scattering coeffcients at the interface implemented by adopting the tight-binding model and proper boundary conditions. Then, in the trilayer case, we study the spin mixing conductance and the dephasing length associated with the transition from ferromagnetic order to antiferromagnetic order.
213

Adaptivní rozdělovač datového toku / Adaptive embedded data splitter

Kazelle, Kamil January 2013 (has links)
This diploma work aims to invent an algorithm for use of serial interface SGMII (serial gigabit multimedia independent interface) in adaptive embedded data splitter for Gigabit Ethernet standard 1000Base-T interface and also to aplicate these algorithms to FPGA circuit.
214

Investigating Catalytic Selectivity of Nanoparticles encapsulated in MOFs:

Ren, Chenhao January 2021 (has links)
Thesis advisor: Chia-kuang Tsung / Thesis advisor: Dunwei Wang / Coating porous materials is a potential pathway to improve Catalytic performance of heterogeneous catalysts. The unique properties of Metal organic frameworks (MOFs) like huge surface area, long range order and high tenability make them promising coating materials. However, two traditional MOF encapsulation methods have their own issues. Herein, we synthesized Pt/Pd metal nanoparticles @UiO-66-NH2 via a one-pot in situ method which has good control of nanoparticles size while avoids the introduction of capping agent. The catalytic performance of synthesized Pt@UiO-66-NH2 is tested via selective hydrogenation of Crotonaldehyde. And the selectivity of our desired product achieves 70.42% which is much higher than merchant Pt catalysts. A step further, we used linker exchange to replace the original NH2-BDC linker of which amine group plays an important role in the coating process. After linker exchanging, the significant decreasing in selectivity of our target product demonstrates that the interaction between Pt and amine group does have some positive impacts on their catalytic performance. We hope our research could provide some insights of the MOFs and nanoparticles interface and help rational design of catalysts with high performance. / Thesis (MS) — Boston College, 2021. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
215

Statistics of the turbulent/non-turbulent interface in a spatially evolving mixing layer

Cristancho, Juan 12 1900 (has links)
The thin interface separating the inner turbulent region from the outer irrotational fluid is analyzed in a direct numerical simulation of a spatially developing turbulent mixing layer. A vorticity threshold is defined to detect the interface separating the turbulent from the non-turbulent regions of the flow, and to calculate statistics conditioned on the distance from this interface. Velocity and passive scalar statistics are computed and compared to the results of studies addressing other shear flows, such as turbulent jets and wakes. The conditional statistics for velocity are in remarkable agreement with the results for other types of free shear flow available in the literature. In addition, a detailed analysis of the passive scalar field (with Sc 1) in the vicinity of the interface is presented. The scalar has a jump at the interface, even stronger than that observed for velocity. The strong jump for the scalar has been observed before in the case of high Schmidt number, but it is a new result for Schmidt number of order one. Finally, the dissipation for the kinetic energy and the scalar are presented. While the kinetic energy dissipation has its maximum far from the interface, the scalar dissipation is characterized by a strong peak very close to the interface.
216

The Effects of Prototype Testing Medium on the User's Overall Perception of Usability and Ability to Detect Usability Flaws

Boothe, Chase Shelton 15 December 2012 (has links)
Inconsistencies among testing methods and results in previous research prompted this study that builds upon a systematic usability testing research framework to better understand how interface medium influences users’ abilities to detect usability flaws in applications. Medium was tested to identify its effects on users’ perceptions of usability and abilities to detect usability problems and severe usability problems. Also explored was the relationship between users’ perceptions of usability and abilities to detect usability problems. Results indicated that medium has no effect on users’ abilities to detect usability problems or perceptions of usability. However, results did indicate an interaction between medium and the tested application in which users were able to identify significantly more usability problems on a higher fidelity medium using a particular application. Results also indicated that as users’ perceptions of an application’s usability increases, the users are less able to detect usability problems in that application.
217

Strategie pro Mikulov / Strategy for Mikulov

Kratochvíl, Ivo January 2011 (has links)
The project creates a strategy of new developement of Mikulov and it defines interface between city and landscape.
218

High Performance Wide Bandgap Perovskite Solar Cell Based on Interface Engineering

wang, jiayi 17 May 2023 (has links)
As the power conversion efficiency (PCE) of single-junction solar cells approaching its theoretical limit, tandem solar cells have attracted great attention due to their ability to break this limitation. For example, the PCE of crystalline silicon-based solar cells (c-Si) reached 26.81% with an area of 274.4 cm2, approaching the theoretical limit of 29.4%. By combining the c-Si with perovskites, the theoretical PCE limitation of 29.4% can be further increased to 45%. The wide-bandgap (1.68 eV) inverted (p-i-n) perovskite solar cells (PSCs) are ideal candidates to integrate on top of narrow-bandgap solar cells to fabricate tandem solar cells, owing to the simple fabrication process and tunable bandgap. However, the PCE of wide-bandgap perovskite solar cells is limited by the severe open-circuit voltage loss due to non-radiative recombination arising from trap-assisted recombination and interfacial recombination. In this thesis, Poly[(9,9-bis[3-(trimethylammonium)propyl-2,7-fluorene)]-alt-2,7- (9,9-dioctylfluorene) diiodide (PFN-I), as modification layer between hole transport layer (HTL) and perovskite, was applied to efficiently passivate the interfacial defects, moderate the growth of perovskite crystal and modify the interfacial energy level alignment to enhance hole extraction. Through comprehensive characterization, it has been observed that the introduction of PFN-I into the system effectively reduces non-radiative recombination. Therefore, a PCE of 21.9% with an open-circuit voltage of 1.24 V and a fill factor of 80% was obtained for 1.68 eV-bandgap inverted PSCs.
219

La Charrue - pour une représentation des données dans l'interface homme-machine

Gauthier, Jean-François January 1999 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
220

The Effects of Interface Mobility on Bubble and Drop Dynamics

Yang, Fan 10 1900 (has links)
The presence of bubbles within liquid pools is ubiquitous in many natural and industrial settings. Plants and other living systems can release gas bubbles which detach and rise up through lakes and the ocean. Degassing also forms gas bubbles on solid surfaces inside the liquids, like that from champagne or poured soda drinks. The bubbles eventually rise to the pool surface, where they can bounce or pop into the air. The detailed dynamical interaction of the bubble and the free surface can be greatly affected by any impurities on their surface, which can affect the mobility of the free surface. In this dissertation, we use both experiments and numerical simulations to study these hydrodynamics. First, we study the rise and bouncing of bubbles or water droplets from the free surface inside a perfluorocarbon liquid. From all four different configurations of mobile/immobile interface pairs we show that the mobile interface always induces stronger bouncing but faster coalescence. The bouncing enhancement ratio between mobile and immobile interface is $1.8\pm0.1$ for bubbles and $1.5\pm0.1$ for water droplets, with the size range from $250 \, \mu m - 550 \, \mu m$ for bubble and $600 \, \mu m - 1200 \, \mu m$ for droplet. Then the top phase is replaced with a glass plate to eliminate the influence from other internal properties besides surface mobility. Since our numerical simulations perfectly reproduce the experiments, we extend our simulations to the free frontal collision of two equivalent droplets. The results not only support our previous conclusions but also predict another peculiar second-collision phenomenon under certain conditions. Then we replace the surrounding liquid with more practical ones of water and ethanol. In extra-pure water, we find that a millimeter-sized bubble has a mobile interface. We add arachidic acid on the top surface to further investigate bouncing from an immobile interface without changing the interfacial tension. The bouncing enhancement by mobile vs immobile interfaces is once again verified for the water-air interface. For millimeter-sized bubbles, as we increase the bubble size from $780 \, \mu m - 1550 \, \mu m$ the bouncing enhancement ratio decreases from 1.8 to 1.2. Finally, we look into the bubble shape and evolution of the liquid film profile during the bouncing from a top glass substrate, using interferometry and numerical simulations. We use 640 nm laser interferometry with a maximum thickness resolution of 120 nm. The center-of-mass trajectory and film profiles are measured for the first bounce of bubbles between 0.8 mm to 1.2 mm. Then we compare the 1.48 mm bubble impact on a no-slip top wall with the SRYL model prediction, where they shared the same dimple diameter but have a non-trivial deviation in dimple depth. Lastly, we simulate the frontal collision between two identical 1.45 mm bubbles, which have complex multi-dimple formations during the bouncing process.

Page generated in 0.0782 seconds