• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 392
  • 102
  • 79
  • 54
  • 32
  • 13
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 886
  • 160
  • 130
  • 97
  • 85
  • 81
  • 75
  • 74
  • 72
  • 67
  • 59
  • 57
  • 53
  • 51
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Processing of Simulated and Experimental Images of Closely Spaced Binary Stars Using Speckle Interferometry

Smidth, Niels 01 June 2016 (has links) (PDF)
Theory and methods of processing speckle interferometry data from close visual binary stars are presented and implemented. The effects of the optical systems used for observing close visual binary stars are explained and simulated from both the geometrical and physical optical viewpoints. The atmospheric phase distortion and shot noise responsible for the observed speckle patterns are simulated. The deconvolution technique originally presented by Labeyrie is implemented to extract astrometric data from close visual binary stars. This method is applied to both simulated and experimental data from Kitt Peak National Observatory as validation. Parts of the deconvolution process are optimized to allow for near real time calculations in an automated observatory.
312

Skin friction measurements around a wing-body junction using oil- film laser interferometry

Cooke, Ira O. 22 June 2010 (has links)
A direct, simple, and accurate way to measure skin friction by oil-film laser interferometry has been developed by various researchers. Equations and methods were developed to correct measurement errors arising from three-dimensional effects and pressure gradients. The oil-film, dual-beam laser interferometer was constructed to measure the skin friction around a wing-body junction in a three-dimensional, turbulent boundary layer with pressure gradients. The flow was dominated by the formation of a junction vortex generated at the nose of the wing-body. The oil-film skin friction results were compared with previous skin-friction measurements for the flow obtained by hot-wire measurements. The skin friction values agreed within approximately 8% between the two methods. The effects and benefits of scanning laser interferometry and alternative beam directions were investigated and discussed. The effect of dirt contamination on the data is also discussed. Methods to improve the data quality are presented. / Master of Science
313

Coupling compensation of the antenna array response for direction finding applications

Ghazaany, Tahereh S., Zhu, Shaozhen (Sharon), Abd-Alhameed, Raed, Jones, Steven M.R., Noras, James M., Van Buren, T., Suggett, T., Marker, S. January 2014 (has links)
No / In this research work the improvement of AOA estimation accuracy by applying a decoupling matrix derived using the receiving mode approach has been investigated using data measured in an anechoic chamber. The receiver was a 4-element uniform circular array with quarter wavelength inter-element spacing deployed on a square metal plate. The performance of the angle of arrival estimation error has been observed for two groups of direction finding algorithms, namely phase comparison-based (interferometry) and covariance-based algorithms. Mutual coupling compensation on AOA was found to improve accuracy by approximately 50%.
314

Accuracy of Biomass and Structure Estimates from Radar and Lidar

Ahmed, Razi Uddin 01 May 2012 (has links)
A better understanding of ecosystem processes requires accurate estimates of forest biomass and structure on global scales. Recently, there have been demonstrations of the ability of remote sensing instruments, such as radar and lidar, for the estimation of forest parameters from spaceborne platforms in a consistent manner. These advances can be exploited for global forest biomass accounting and structure characterization, leading to a better understanding of the global carbon cycle. The popular techniques for estimation of forest parameters from radar instruments in particular, use backscatter intensity, interferometry and polarimetric interferometry. This dissertation analyzes the accuracy of biomass and structure estimates over temperate forests of the North-Eastern United States. An empirical approach is adopted, relying on ground truth data collected during field campaigns over the Harvard and Howland Forests in 2009. The accuracy of field biomass estimates, including the impact of the diameter-biomass allometry is characterized for the field sites. Full waveform lidar data from two LVIS field campaigns of 2009 over the Harvard and Howland forests is analyzed to assess the accuracy of various lidar-biomass relationships. Radar data from NASA JPL's UAVSAR is analyzed to assess the accuracy of the backscatter-biomass relationships with a theoretical radar error model. The relationship between field biomass and InSAR heights is explored using SRTM elevation and LVIS derived ground topography. Temporal decorrelation, a major factor affecting the accuracy of repeat-pass InSAR observations of forests is analyzed using the SIR-C single-day repeat data from 1994. Finally, PolInSAR inversion of heights over the Harvard and Howland forests is explored using UAVSAR repeat-pass data from the 2009 campaign. These heights are compared with LVIS height estimates and the impact of temporal decorrelation is assessed.
315

Spatio-temporal analysis of coastal sediment erosion in Cape Town through remote sensing and geoinformation science

Fanikiso, Lynn 10 June 2023 (has links) (PDF)
Coastal erosion can be described as the landward or seaward propagation of coastlines. Coastal processes occur over various space and time scales, limiting in-situ approaches of monitoring change. As such it is imperative to take advantage of multisensory, multi-scale and multi-temporal modern spatial technologies for multi-dimensional coastline change monitoring. The research presented here intends to showcase the synergy amongst remote sensing techniques by showcasing the use of coastal indicators towards shoreline assessment over the Kommetjie and Milnerton areas along the Cape Town coastline. There has been little progress in coastal studies in the Western Cape that encompass the diverse and dynamic aspects of coastal environments and in particular, sediment movement. Cape Town, in particular; is socioeconomically diverse and spatially segregated, with heavy dependence on its 240km of coastline. It faces sea level rise intensified by real-estate development close to the high-water mark and on reclaimed land. Spectral indices and classification techniques are explored to accommodate the complex bio-optical properties of coastal zones. This allows for the segmentation of land and ocean components to extract shorelines from multispectral Landsat imagery for a long term (1991-2021) shoreline assessment. The DSAS tool used these extracted shorelines to quantify shoreline change and was able to determine an overall averaged erosional rate of 2.56m/yr. for Kommetjie and 2.35m/yr. for Milnerton. Beach elevation modelling was also included to evaluate short term (2016-2021) sediment volumetric changes by applying Differential Interferometry to Sentinel-1 SLC data and the Waterline method through a combination of Sentinel -1 GRD and tide gauge data. The accuracy, validation and correction of these elevation models was conducted at the pixel level by comparison to an in-field RTK GPS survey used to capture the current state of the beaches. The results depict a sediment deficit in Kommetjie whilst accretion is prevalent along the Milnerton coastline. Shoreline propagation and coastal erosion quantification leads to a better understanding of geomorphology, hydrodynamic and land use influences on coastlines. This further informs climate adaptation strategies, urban planning and can support further development of interactive coastal information systems.
316

Applications of Induced Gratings in Nonlinear Media

Abeywickrema, Haburugala Vithanage Ujitha A. 03 June 2015 (has links)
No description available.
317

Enhancing the Capability of White Light Interferometry on Complex Surfaces

Weaver, Andrew 08 1900 (has links)
<p> The Zygo NewView 5000 is a new piece of equipment for McMaster University - it has recently been bought, and it is the first white light interferometer at McMaster. This thesis begins by developing the capabilities of this equipment. A significant limitation found is that the sample being measured must be near perpendicular to the optical axis. The optical axis is the centre of the light beam path for the light that the white light interferometer uses to make measurements. A significant enough angle away from perpendicularity will cause "dropout," where no data is returned for that pixel. Through experimenting with taking flat measurements (where the test part is perfectly perpendicular) and attempting to combine them with tilted measurements, a certain amount of distortion was found between the two. In order to properly fill in data, this problem needs to be addressed; correspondingly the focus of the thesis was altered to account for the distortion. Further experiments were performed comparing measurement profile results to those obtained using a Mitutoyo Formtracer, a stylus profilometer. It was determined that measurement distortion on the Zygo NewView only occurred when the samples were tilted; tilted measurements from the Zygo NewView were therefore altered with a distortion correction function to compensate for the error. There was a much better match of the tilted Zygo data to the Mitutoyo Formtracer results when the distortion correction was applied to the data, particularly in the areas where the tilt improves the data quality.</p> / Thesis / Master of Applied Science (MASc)
318

Quasi-Distributed Intrinsic Fabry-Perot Interferometric Fiber Sensor for Temperature and Strain Sensing

Huang, Zhengyu 23 March 2006 (has links)
The motivation of this research is to meet the growing demand for the measurand high-resolution, high-spatial resolution, attenuation insensitive and low-cost quasi-distributed temperature and strain sensors that can reliably work under harsh environment or in extended structures. There are two main drives for distributed fiber sensor research. The first is to lower cost-per-sensor so that the fiber sensors may become price-competitive against electrical sensors in order to gain widespread acceptance. The second is to obtain spatial distribution of the measurand. This dissertation presents detailed research on the design, modeling, analysis, system implementation, sensor fabrication, performance evaluation, sensor field test and noise analysis of a quasi-distributed intrinsic Fabry-Perot interferometric (IFPI) fiber sensor suitable for temperature and strain measurement. For the first time to our knowledge, an IFPI sensor using a different type of fiber spliced in between two single-mode fibers is proposed and tested. The proposed sensor has high measurement accuracy, excellent repeatability, a large working range and a low insertion-loss. It requests no annealing after the sensor is made, and the sensor is calibration-free. The sensor fabrication is low-cost and has a high yield rate. The goal for this research is to bring this sensor to a level where it will become commercially viable for quasi-distributed sensing applications. / Ph. D.
319

Theoretical and Experimental Study of Low-Finesse Extrinsic Fabry-Perot Interferometric Fiber Optic Sensors

Han, Ming 06 July 2006 (has links)
In this report, detailed and systematic theoretical and experimental study of low-finesse extrinsic Fabry-Perot interferometric (EFPI) fiber optic sensors together with their signal processing methods for white-light systems are presented. The work aims to provide a better understanding of the operational principle of EFPI fiber optic sensors, and is useful and important in the design, optimization, fabrication and application of single mode fiber(SMF) EFPI (SMF-EFPI) and multimode fiber (MMF) EFPI (MMF-EFPI) sensor systems. The cases for SMF-EFPI and MMF-EFPI sensors are separately considered. In the analysis of SMF-EFPI sensors, the light transmitted in the fiber is approximated by a Gaussian beam and the obtained spectral transfer function of the sensors includes an extra phase shift due to the light coupling in the fiber end-face. This extra phase shift has not been addressed by previous researchers and is of great importance for high accuracy and high resolution signal processing of white-light SMF-EFPI systems. Fringe visibility degradation due to gap-length increase and sensor imperfections is studied. The results indicate that the fringe visibility of a SMF-EFPI sensor is relatively insensitive to the gap-length change and sensor imperfections. Based on the spectral fringe pattern predicated by the theory of SMF-EFPI sensors, a novel curve fitting signal processing method (Type 1 curve-fitting method) is presented for white-light SMF-EFPI sensor systems. Other spectral domain signal processing methods including the wavelength-tracking, the Type 2-3 curve fitting, Fourier transform, and two-point interrogation methods are reviewed and systematically analyzed. Experiments were carried out to compare the performances of these signal processing methods. The results have shown that the Type 1 curve fitting method achieves high accuracy, high resolution, large dynamic range, and the capability of absolute measurement at the same time, while others either have less resolution, or are not capable of absolute measurement. Very different from SMF-EFPI sensors, MMF-EFPI sensors with high fringe visibility usually are more difficult to obtain in practice because the fringe visibility of a MMF-EFPI sensor is much more sensitive to gap-length change and sensor head imperfections. %Previously, only geometric-optics are available to analyze MMF-EFPI sensors which approximate the light in MMF as rays propagating in different directions. Geometric-optics theory has fundenmental limitations because it is approximate and only valid for limited conditions. Moreover, geometric-optics theory is not capable of poviding the exact fringe pattern which is important in the signal processing of white light MMF-EFPI sensor systems. In this report, Previous mathematical models for MMF-EFPI sensors are all based on geometric optics; therefore their applications have many limitations. In this report, a modal theory is developed that can be used in any situations and is more accurate. The mathematical description of the spectral fringes of MMF-EFPI sensors is obtained by the modal theory. Effect on the fringe visibility of system parameters, including the sensor head structure, the fiber parameters, and the mode power distribution in the MMF of the MMF-EFPI sensors, is analyzed. Experiments were carried out to validate the theory. Fundamental mechanism that causes the degradation of the fringe visibility in MMF-EFPI sensors are revealed. It is shown that, in some situations at which the fringe visibility is important and difficult to achieve, a simple method of launching the light into the MMF-EFPI sensor system from the output of a SMF could be used to improve the fringe visibility and to ease the fabrication difficulties of MMF-EFPI sensors. Signal processing methods that are well-understood in white-light SMF-EFPI sensor systems may exhibit new aspects when they are applied to white-light MMF-EFPI sensor systems. This report reveals that the variations of mode power distribution (MPD) in the MMF could cause phase variations of the spectral fringes from a MMF-EFPI sensor and introduce measurement errors for a signal processing method in which the phase information is used. This MPD effect on the wavelength-tracking method in white-light MMF-EFPI sensors is theoretically analyzed. The fringe phases changes caused by MPD variations were experimentally observed and thus the MFD effect is validated. / Ph. D.
320

Development of Tunable Optical Filters for Interrogation of White-Light Interferometric Sensors

Yu, Bing 18 May 2005 (has links)
Interferometric fiber optic sensors have been extensively used to measure a large variety of physical, chemical and biomedical parameters due to their superior performance. At the Center for Photonics Technology of Virginia Tech, a variety of interferometric fiber optic sensors have been developed in recent years, for efficient oil recovery, partial discharge detection in high voltage transformers, pressure sensing in gas turbine engines, and temperature measurements in gasifiers and boilers. However, interrogating an interferometric sensor involves accurate recovery of a measurand from the phase-modulated lightwaves, and has been a challenge for high performance, high speed, and low-cost, to current white-light interferometry (WLI) techniques, such as the widely used scanning WLI (S-WLI) and spectral-domain WLI (SD-WLI). The performance of a white-light interferometric sensing system depends not only on the design of the probes, but also, to a great extent, on the interrogation strategy to be used. In this Ph.D. research, a tunable optical filter based WLI (TOF-WLI) is proposed and validated as a low cost, yet high performance, solution to the interrogation of various types of interferometric sensors. In addition to the capability of linear/quadrature demodulation, TOF-WLI retains all the features of WLI, is compatible with the SD-WLI, and can be tailored for both static and wideband signals. It also has great potential in surface metrology and biomedical imaging as well as optical spectroscopy. The key, to the success of this new approach in competition with the other available WLI techniques, is that the tunable optical filter (TOF) must be specially designed for sensing and extremely low cost. Therefore, two novel TOFs, a diffraction grating tunable filter (DG-TOF) and an extrinsic Fabry-Perot tunable filter (EFP-TF), are proposed and demonstrated. Laboratory and field test results on using the DG-TOF WLI for partial discharge and thermal fault detection in high voltage power transformers, and the EFP-TF WLI in temperature sensor systems and a turbine engine monitoring system will also be presented to demonstrate the feasibility for efficient sensor interrogation. / Ph. D.

Page generated in 0.0949 seconds