• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 393
  • 102
  • 79
  • 54
  • 32
  • 13
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 887
  • 161
  • 130
  • 98
  • 85
  • 82
  • 75
  • 74
  • 72
  • 67
  • 59
  • 57
  • 53
  • 51
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

High-sensitivity Full-field Quantitative Phase Imaging Based on Wavelength Shifting Interferometry

Chen, Shichao 06 September 2019 (has links)
Quantitative phase imaging (QPI) is a category of imaging techniques that can retrieve the phase information of the sample quantitatively. QPI features label-free contrast and non-contact detection. It has thus gained rapidly growing attention in biomedical imaging. Capable of resolving biological specimens at tissue or cell level, QPI has become a powerful tool to reveal the structural, mechanical, physiological and spectroscopic properties. Over the past two decades, QPI has seen a broad spectrum of evolving implementations. However, only a few have seen successful commercialization. The challenges are manifold. A major problem for many QPI techniques is the necessity of a custom-made system which is hard to interface with existing commercial microscopes. For this type of QPI techniques, the cost is high and the integration of different imaging modes requires nontrivial hardware modifications. Another limiting factor is insufficient sensitivity. In QPI, sensitivity characterizes the system repeatability and determines the quantification resolution of the system. With more emerging applications in cell imaging, the requirement for sensitivity also becomes more stringent. In this work, a category of highly sensitive full-field QPI techniques based on wavelength shifting interferometry (WSI) is proposed. On one hand, the full-field implementations, compared to point-scanning, spectral domain QPI techniques, require no mechanical scanning to form a phase image. On the other, WSI has the advantage of preserving the integrity of the interferometer and compatibility with multi-modal imaging requirement. Therefore, the techniques proposed here have the potential to be readily integrated into the ubiquitous lab microscopes and equip them with quantitative imaging functionality. In WSI, the shifts in wavelength can be applied in fine steps, termed swept source digital holographic phase microscopy (SS-DHPM), or a multi-wavelength-band manner, termed low coherence wavelength shifting interferometry (LC-WSI). SS-DHPM brings in an additional capability to perform spectroscopy, whilst the LC-WSI achieves a faster imaging rate which has been demonstrated with live sperm cell imaging. In an attempt to integrate WSI with the existing commercial microscope, we also discuss the possibility of demodulation for low-cost sources and common path implementation. Besides experimentally demonstrating the high sensitivity (limited by only shot noise) with the proposed techniques, a novel sensitivity evaluation framework is also introduced for the first time in QPI. This framework examines the Cramér-Rao bound (CRB), algorithmic sensitivity and experimental sensitivity, and facilitates the diagnosis of algorithm efficiency and system efficiency. The framework can be applied not only to the WSI techniques we proposed, but also to a broad range of QPI techniques. Several popular phase shifting interferometry techniques as well as off-axis interferometry is studied. The comparisons between them are shown to provide insights into algorithm optimization and energy efficiency of sensitivity. / Doctor of Philosophy / The most common imaging systems nowadays capture the image of an object with the irradiance perceived by the camera. Based on the intensity contrast, morphological features, such as edges, humps, and grooves, can be inferred to qualitatively characterize the object. Nevertheless, in scientific measurements and research applications, a quantitative characterization of the object is desired. Quantitative phase imaging (QPI) is such a category of imaging techniques that can retrieve the phase information of the sample by properly design the irradiance capturing scheme and post-process the data, converting them to quantitative metrics such as surface height, material density and so on. The imaging process of QPI will neither harm the sample nor leave exogenous residuals. As a result, it has thus gained rapidly growing attention in biomedical imaging. Over the past two decades, QPI has seen a broad spectrum of evolving implementations, but only a few have seen successful commercialization. The challenges are manifold whilst one stands out - that they have expensive optical setups that are often incompatible with existing commercial microscope platforms. The setups are also very complicated such that without professionals having solid optics background, it is difficult to operate the system to perform imaging applications. Another limiting factor is the insufficient understanding of sensitivity. In QPI, sensitivity characterizes the system repeatability and determines its quantification resolution. With more emerging applications in cell imaging, the requirement for sensitivity also becomes more stringent. In this work, a category of highly sensitive full-field QPI techniques based on wavelength shifting interferometry (WSI) is proposed. WSI images the full-field of the sample simultaneously, unlike some other techniques requiring scanning one probe point across the sample. It also has the advantage of preserving the integrity of the interferometer, which is the key structure to enable highly sensitive measurement for QPI methods. Therefore, the techniques proposed here have the potential to be readily integrated into the ubiquitous lab microscopes and equip them with quantitative imaging functionality. Differed by implementations, two WSI techniques have been proposed, termed swept source digital holographic phase microscopy (SS-DHPM), and low coherence wavelength shifting interferometry (LC-WSI), respectively. SS-DHPM brings in an additional capability to perform spectroscopy, whilst the LC-WSI achieves a faster imaging rate which has been demonstrated with live sperm cell imaging. In an attempt to integrate WSI with the existing commercial microscope, we also discuss the possibility of demodulation for low-cost sources and common path implementation. Besides experimentally demonstrating the high sensitivity with the proposed techniques, a novel sensitivity evaluation framework is also introduced for the first time in QPI. This framework not only examines the realistic sensitivity obtained in experiments, but also compares it to the theoretical values. The framework can be widely applied to a broad range of QPI techniques, providing insights into algorithm optimization and energy efficiency of sensitivity.
322

Optical Path Length Multiplexing of Optical Fiber Sensors

Wavering, Thomas A. 23 February 1998 (has links)
Optical fiber sensor multiplexing reduces cost per sensor by designing a system that minimizes the expensive system components (sources, spectrometers, etc.) needed for a set number of sensors. The market for multiplexed optical sensors is growing as fiberoptic sensors are finding application in automated factories, mines, offshore platforms, air, sea, land, and space vehicles, energy distribution systems, medical patient surveillance systems, etc. Optical path length multiplexing (OPLM) is a modification to traditional white-light interferometry techniques to multiplex extrinsic Fabry-Perot interferometers and optical path length two-mode sensors. Additionally, OPLM techniques can be used to design an optical fiber sensor to detect pressure/force/acceleration and temperature simultaneously at a single point. While power losses and operating range restrictions limit the broadscale applicability of OPLM, it provides a way to easily double or quadruple the number of sensors by modifying the demodulation algorithm. The exciting aspect of OPLM is that no additional hardware is needed to multiplex a few sensors. In this way OPLM works with conventional technology and algorithms to drastically increase their efficiency. [1] / Master of Science
323

Modeling and Signal Processing of Low-Finesse Fabry-Perot Interferometric Fiber Optic Sensors

Ma, Cheng 24 October 2012 (has links)
This dissertation addresses several theoretical issues in low-finesse fiber optic Fabry-Perot Interferometric (FPI) sensors. The work is divided into two levels: modeling of the sensors, and signal processing based on White-Light-Interferometry (WLI). In the first chapter, the technical background of the low-finesse FPI sensor is briefly reviewed and the problems to be solved are highlighted. A model for low finesse Extrinsic FPI (EFPI) is developed in Chapter 2. The theory is experimentally proven using both single-mode and multimode fiber based EFPIs. The fringe visibility and the additional phase in the spectrum are found to be strongly influenced by the optical path difference (OPD), the output spatial power distribution and the working wavelength; however they are not directly related to the light coherence. In Chapter 3, the Single-Multi-Single-mode Intrinsic FPI (SMS-IFPI) is theoretically and experimentally studied. Reflectivity, cavity refocusing, and the additional phase in the sensor spectrum are modeled. The multiplexing capacity of the sensor is dramatically increased by promoting light refocusing. Similar to EFPIs, wave-front distortion generates an additional phase in the interference spectrogram. The resultant non-constant phase plays an important role in causing abrupt jumps in the demodulated OPD. WLI-based signal processing of the low-finesse FP sensor is studied in Chapter 4. The lower bounds of the OPD estimation are calculated, the bounds are applied to evaluate OPD demodulation algorithms. Two types of algorithms (TYPE I & II) are studied and compared. The TYPE I estimations suffice if the requirement for resolution is relatively low. TYPE II estimation has dramatically reduced error, however, at the expense of potential demodulation jumps. If the additional phase is reliably dependent on OPD, it can be calibrated to minimize the occurrence of such jumps. In Chapter 5, the work is summarized and suggestions for future studies are given. / Ph. D.
324

Application of optical fibers to wideband differential interferometry and measurements of pulsed waves in liquids

Garg, Avinash O. January 1982 (has links)
Wideband differential interferometry has been applied to the detection of SAW on specimen surfaces and ultrasonic compressional waves in liquids. Herein is described the performance of a wideband differential system which uses single mode optical fibers to transmit coherent light from input optics to a surface which supports which supports ultrasonic waves. Polarized light from a 2.0 mW helium-neon laser source is divided and coupled to two flexible bundled single mode optical fibers which transmit the light to a small remote detection head. The light at the output end of the fibers is collimated and focused by a varifocal lens system to points on the surface of a specimen to be inspected. Elastic waves on the specimen differentially modulate the relative phases of the two optical beams due to periodic changes in particle displacement at the surface. Upon reflection, the two beams are superimposed, filtered, and detected to produce an optical signal directly proportional to instantaneous displacements. Also described is the development of two beam and four beam differential systems for the detection of ultrasonic compressional waves in water. Two laser beams are transmitted through a water tank and combined to produce an interference pattern. The detected motion of the pattern yields a differential measure of the acoustic field amplitude at the location of the two probe beams. If a pulsed ultrasonic wave is generated in the tank in a direction perpendicular to and coplanar with the probe beams, each beam is modulated independently and output signals of opposite phase are produced. The acoustic sensitivity of both the above systems may be adjusted by changing the separation between the two spots on the surface or the two beams in the tank. The system effectively discriminates against low frequency noise vibrations, while the upper acoustic frequency response exceeds 100 MHz. Applications requiring flexibility allowed by a remote detection head can use the fiber system to their advantage while potential applications of the four beam system to three dimensional mapping and ultrasonic field scattering is suggested. / Master of Science
325

Developments in moire interferometry: carrier pattern technique and vibration insensitive interferometers

Guo, Yifan January 1989 (has links)
Due to the rapid expansion of applications of composite materials, investigations of their properties have greatly increased. Since theoretical and numerical methods have many limitations for anisotropic materials, experimental methods are sometimes the only way to answer the questions. It has been proved that moire interferometry is a powerful technique in the study of composite materials. The high sensitivity and resolution of a measurement technique is the key to determining the properties of a material which has a fine and complicated structure such as fiber reinforced composite laminates. In this paper, a carrier fringe method is introduced to increase the resolution of the fringe gradient in the moire technique. The ability of measurement is extended to the micromechanics region. High strain concentrations and the dramatic displacement variations can be determined by measuring the slopes of carrier fringes. Strain distributions across the plies (with the thickness of 125 μm) in graphite/epoxy composites and strain concentrations in the resin-rich zones (with the thickness of 10 μm) between neighboring plies are revealed by the carrier fringe technique. Three experiments are presented to show the effectiveness of the application of carrier fringes to resolve fringe gradients and obtain strains. The current moire technique is limited to the optical laboratory because it is extremely sensitive to the disturbance of the environment. A vibration with magnitude of 0.2 μm can completely wash out the contrast of a moire fringe pattern. The study has been done in moving moire interferometry off the optical table. Vibration insensitive moire systems are investigated to extend the moire technique to the tests of large structures and using testing machines for loading. Vibration problems are discussed and the new ideas for eliminating vibration effects are presented. Six representative schemes are analyzed and three of these systems are built to perform experiments in rough environments such as on a hydraulic testing machine. The results show the great success of these new systems. / Ph. D.
326

Optical pattern comparison by interferometry

Tenefrancia, Sandra L. January 1988 (has links)
By placing two similar input transparencies adjacent to each other in the same plane, and illuminating them with coherent light, it is possible to create parallel fringes that will modulate the composite Fraunhofer diffraction pattern of the two input objects. The power spectrum of the combined inputs, i.e. test and reference signal Fourier transform, is analyzed for regularity of the fringe pattern. The method of interference used on input with small rotational errors and on relatively large displacements of the input does not affect the recognition capabilities of the system. This optical method is useful for making rapid pattern comparisons, where the signal to noise ratio is large. / Master of Science
327

Self-assembly of anisotropic nanostructures and interferometric spectroscopy

He, Zhixing 20 March 2020 (has links)
With the development of controlled and predictable nanoparticle fabrication, assembling multiple nano-objects into larger functional nanostructure has attracted increasing attention. As the most basic structure, assembly of one-dimensional (1D) structures is a good model for investigating the assembly mechanism of a nanostructure's formation from individual particles. In this dissertation, the dynamics and the growth mechanism of anisotropic 1D nanostructures is investigated. In our first study, we demonstrate a simple method for assembling superparamagnetic nanoparticles (SPIONs) into structure-controlled 1D chains in a rotating magnetic field. The length of the SPION chains can be well described by an exponential distribution, as is also seen in SPION chains in a static field. In addition, the maximum chain length is limited by the field's rotational speed, as is seen in micro-sized beads forming chains in a rotating field. However, due to a combination of thermal fluctuations and hydrodynamic forces, the chain length in our case is shorter than either limit. In addition to chain length, the disorder of chains was also studied. Because of the friction between particles, kinetic potential traps prevent relaxation to the global free energy minimum. The traps are too deep to be overcome through thermal fluctuations, and assemblies captured by the kinetic traps therefore form disordered chains. We demonstrate that this disorder gradually heals over a timescale of tens of minutes and that the healing process can be promoted by increasing particle concentration or solution ionic strength, suggesting that the chain growth process provides the energy required to overcome the kinetic trapping. Next, we introduce a novel optical technique we term Quantitative Optical Anisotropy Imaging (QOAI). A fast and precise single-particle characterizing technique for anisotropic nanostructures, QOAI allows real-time tracking of particle orientation as well as the spectroscopic characterization of polarizabilities of nanoparticles on a microsecond timescale. The abilities of QOAI are demonstrated by the detection and the characterization of single gold nanorods. We also show that single particle diffusions and the process of particle binding to a wall can be tracked through QOAI. The rotational diffusivities of gold nanorods near the wall were determined by autocorrelation analysis, which shows that the diffusivity in the polar direction is slightly smaller than in the azimuthal direction. This result demonstrates that a detailed correlation analysis with QOAI may provide the opportunity to analyze both the translational and rotational motion of particles simultaneously, enabling true 3-dimensional orientation tracking. Finally, optical methods including QOAI are applied to the investigation of magnetic assembly, demonstrating that optical anisotropy is generated during particle binding, which can be used as a probe of the magnetic assembly process. QOAI is employed to track the dynamics of magnetic clusters in real time, attempting to capture insights on the self-assembly of the magnetic nanoparticles. By turning the external magnetic field on and off, the processes of combining superparamagnetic colloidal nanoparticle clusters into chain assemblies are monitored along with the chain growth. This fast and orientation-sensitive single-particle measurement opens the door to detailed studies of self-assembly away from equilibrium. / Doctor of Philosophy / Nanotechnology is the study and application of phenomena at the nanoscale, which is between 1 and 100 nm. Due to quantum effects, nanomaterials exhibit many interesting properties that cannot be found in bulk materials and are highly influenced by the shape of the nanostructures. One of the most promising strategies for forming complex nanostructures is to use smaller nanoparticles as building blocks. Therefore, significant efforts have been spent on the studies of the fabrication and modeling of the assembly of nanostructures. As a good starting point for analyzing the mechanism of self-assembly, we focus on the most basic structure, one-dimensional (1D) nanowires and chains. First, we demonstrate a simple method to fabricate one-dimensional magnetic chains from spherical magnetic nanoparticles in a rotating magnetic field. The growth mechanism of the nanochains is investigated, indicating the theory developed for chains formed with larger beads is not applicable at the nanoscale, and additional factors, such as the effect of temperature, need to be considered. Second, we introduce a fast, sensitive optical technique for characterizing anisotropic nanostructures. Because of their unique optical properties, gold nanorods are used to demonstrate the capabilities of the optical system. Not only static properties (orientation, aspect ratio), but also dynamics properties (rotational motion), of single gold nanorods are characterized quantitatively. Finally, this optical technique is extended to preliminary work on characterizing magnetic chain assembly. The processes of magnetic cluster binding and dissociation in a magnetic field are monitored and analyzed.
328

Advances in displacement and strain analysis by moiré interferometry

Weissman, Eric M. January 1982 (has links)
Moiré interferometry was developed and extended in two related areas: (1) high density displacement fringes of excellent quality were obtained with a sensitivity of 97.6% of the theoretical maximum, and (2) the complete state of strain on the surface of a tensile specimen with a central hole was obtained by two different shearing techniques. In the high sensitivity experiment a highly reflective diffraction grating of 2000 lines/mm (50,800 ℓ/in) was applied to the surface. Load induced displacement fringes with a sensitivity of 0.24 µm/fringe (9.6 µin/fringe) were obtained by using a virtual reference grating of 4000 lines/mm (101,600 ℓ/in). In a second experiment a silicone, cross-line specimen grating of 600 ℓ/mm (15,000 ℓ/in) was interrogated in the x, y, and 45° directions to obtain a full-field displacement rosette. Fringe patterns of normal strain components, e<sub>x</sub>, e₄₅ and e<sub>y</sub> were then produced by mechanically shearing the displacement patterns. A shearing distance of 0.6 mm (.025 in) was used. By using this strain rosette, the complete state of strain was obtained while avoiding errors in shear strain values caused by unintentional rigid body rotations. In a third experiment the complete state of strain was found by shearing interferometry. Each of the warped wavefronts generated in a moiré interferometry system was separately sheared and recorded on film with a carrier pattern. An adjustable air wedge located near the common focal point of a telecentric lens system was used to shear the wavefronts. The two patterns were superimposed and optically filtered to yield normal strain contours of e<sub>x</sub>, e₄₅ and e<sub>y</sub>. The experimental result was found to be in good agreement with theory. / Master of Science
329

Fabry-Perot Sapphire Temperature Sensor for Use in Coal Gasification

Ivanov, Georgi Pavlov 26 May 2011 (has links)
Sapphire fiber based temperature sensors are exceptional in their ability to operate at temperatures above 1000C and as high as 1800C. Sapphire fiber technology is emerging and the fiber is available commercially. Sapphire fiber has a high loss, is highly multi-mode and does not have a solid cladding, but it is nonetheless very useful in high temperature applications. Of the available interferometer configurations, Fabry-Perot interferometers are distinguished in their high accuracy and great isolation from sources of error. In this thesis, improvements are reported to an existing design to enhance its reliability and to reduce possible modes of failure. The existing high temperature sensor design has shown a lot of potential in the past by continuously measuring the temperature in a coal gasifier for 7 months, but its true potential has not yet been realized. The goal of this work and the work of many others is to extend the working life and reliability of high-temperature optical sapphire temperature sensors in harsh environments by exploring a solid cladding for sapphire fiber, improved fringe visibility sapphire wafers and a new sensor design. This project is supported by the National Energy and Technology Laboratory of the Department of Energy. / Master of Science
330

Optical Fiber Tip Pressure Sensor

Wang, Xingwei 10 November 2004 (has links)
Miniature pressure sensors which can endure harsh environments are a highly sought after goal in industrial, medical and research fields. Microelectromechanical systems (MEMS) are the current methods to fabricate such small sensors. However, they suffer from low sensitivity and poor mechanical properties. To fulfill the need for robust and reliable miniature pressure sensors that can operate under high temperatures, a novel type of optical fiber tip sensor only 125μm in diameter is presented in this thesis. The essential element is a piece of hollow fiber which connects the fiber end and a diaphragm to form a Fabry-Pérot cavity. The all-fused-silica structure fabricated directly on a fiber tip has little temperature dependence and can function very well with high resolution and accuracy at temperatures up to 600 °C. In addition to its miniature size, its advantages include superior mechanical properties, biocompatibility, immunity to electromagnetic interference, disposability and cost-effective fabrication. The principle of operation, design analysis, fabrication implementation and performance evaluation of the sensor are discussed in detail in the following chapters. / Master of Science

Page generated in 0.0818 seconds