• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Aberrations in Cytokine Signaling in Leukemia: Variations in Phosphorylation and O-GlcNAcylation

Tomic, Jelena 31 August 2012 (has links)
Tumor-induced immunosuppression can occur by multiple mechanisms, each posing a significant obstacle to immunotherapy. Evidence presented in this dissertation suggests that aberrant cytokine signaling, as a result of altered metabolism of Chronic Lymphocytic Leukemia (CLL) cells, confers a selective advantage for tumor survival and growth. Cells from CLL patients with aggressive disease (as indicated by high-risk cytogenetics) were found to exhibit prolongation in Interferon (IFN)-induced STAT3 phosphorylation, and increased levels of reactive oxygen species (ROS) in these cells reflected these signaling processes. Changes in the relative balance of phospho-STAT3 and phospho-STAT1 levels, in response to combinations of IL-2 + Toll-like receptor (TLR)-7 agonist + phorbol esters, as well as IFN, were associated with the immunosuppressive and immunogenic states of CLL cells. In addition, immunosuppressive leukemic cells were found to express high levels of proteins with O-linked N-acetylglucosamine (O-GlcNAc) modifications, due to increased metabolic activity through the Hexosamine Biosynthetic Pathway (HBP), which caused impaired intracellular signaling responses and affected disease progression. A conclusion of the studies presented here is that the intrinsic immunosuppressive properties of leukemic cells may be overcome by agents such as Resveratrol that target metabolic pathways of these cells.
12

Modulace funkce plazmacytoidních dendritických buněk: role immunoreceptorů TIM-3 a BDCA-2 / Modulation of plasmacytoid dendritic cell function: role of immunoreceptors TIM-3 and BDCA-2

Font Haro, Albert January 2021 (has links)
Albert Font Haro ABSTRACT Modulation of plasmacytoid dendritic cell function: role of immunoreceptors TIM-3 and BDCA-2 Plasmacytoid dendritic cells (pDCs) are key players in the antiviral response as well as in linking innate and adaptive immune response. They express endosomal toll-like receptors 7 and 9, which can detect ssRNA and unmethylated CpG DNA, respectively. Due to the constitutive expression of the transcription factor IRF7, pDCs are able to rapidly produce massive quantities of type I (α, β, ω) and type III (1, 2, 3, 4) interferons (IFN-I and IFN-III) as well as pro- inflammatory cytokines such as IL-1, IL-6 and TNF-α. After maturation, they also function as antigen-presenting cells. Despite intense research, the mechanisms of IFN and pro-inflammatory cytokines production and regulation are still poorly understood. Using the pDC cell line GEN2.2 and also primary human pDCs, we shed light on the role of kinases MEK and SYK in IFN-I production and regulation. We found that SYK is not only involved in the regulatory receptor (RR)-mediated BCR-like pathway that represents the negative regulation of IFN-I and IFN-III secretion but also in the positive TLR7/9-mediated signal transduction pathway that leads to IFN-I production, representing the immunogenic function. We also found that MEK plays a...

Page generated in 0.205 seconds