• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 368
  • 208
  • 67
  • 48
  • 39
  • 29
  • 21
  • 11
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • Tagged with
  • 937
  • 177
  • 151
  • 122
  • 120
  • 102
  • 98
  • 90
  • 89
  • 76
  • 74
  • 71
  • 71
  • 71
  • 68
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Visualization of type I immunity using bicistronic IFN-gamma reporter mice in vitro and in vivo / Visualisierung der Typ I Immunität durch Verwendung von bizistronischen IFN-gamma Reporter Mäusen in vitro und in vivo

Mayer, Katrin Doris January 2006 (has links) (PDF)
Typ I Immunantworten, wie z.B. gegen Influenza Virus, Sendai Virus aber auch gegen intrazelluläre Erreger wie Toxoplasma gondii sind klassischerweise durch robuste IFN-γ Expression gekennzeichnet. Th1 und CD8+ Effektor T Zellen zählen zu den Hauptproduzenten von IFN-γ. Im Zusammenhang mit Autoimmunerkrankungen, Immunpathologie aber auch Impfstoffentwicklung, ist es überaus wichtig die Regulierung von IFN-γ zu verstehen. In der vorliegenden Arbeit wurde die IFN-γ Expression von CD4+ und CD8+ T Zellen detailliert charakterisiert. Des Weiteren wurde die Rolle des IFN-γ Rezeptors für die IFN-γ Expression von T Zellen untersucht. Unter Zuhilfenahme von bicistronischen IFN-γ-eYFP Reporter Mäusen, welche die direkte Identifizierung und Isolierung von vitalen IFN-γ exprimierenden Zellen ermöglichen, wurde die Expression von IFN-γ in vitro und in vivo, nach Infektion mit den bereits erwähnten Erregern,visualisiert. Die Expression des IFN-γ-eYFP Reporters zeichnete sich, sowohl in vitro als auch in vivo nach Infektion, durch ein äußerst heterogenes Fluoreszenzspektrum aus. Die Helligkeit der Reporter Fluoreszenz korrelierte positiv mit der Menge an IFN-γ Transkripten und mit der Menge des sekretierten IFN-γ Proteins nach Stimulierung. Die Helligkeit des Reporters reflektierte das Potenzial zur IFN-γ Produktion, die eigentliche Sekretion war jedoch weitgehend abhängig von zusätzlicher Stimulierung durch Antigen. Des Weiteren korrelierte die Helligkeit des Reporters mit der zunehmenden Produktion von weiteren proinflammatorischen Zytokinen und Chemokinen. Hoch fluoreszente Zellen exprimierten zudem vermehrt Marker auf ihrer Oberflache, die auf akute Aktivierung hinweisen. Die am hellsten eYFP fluoreszierenden Zellen waren im Allgemeinen weiter ausdifferenziert und ihre Präsenz war auf bestimmte Organe beschränkt. Die anatomische Begrenzung wurde durch den Erreger bestimmt. IFN-γ exprimierende Zellen wurden nach Infektion mit Sendai Virus oder Toxoplasma gondii in IFN-γ Rezeptor defizienten Reporter Mäusen generiert. Die Frequenz und die Helligkeit der eYFP Reporter Expression waren jedoch verändert. Experimente mit dualen Knochenmarks-Chimären Mäusen, welche mit Wild-Typ und IFN-γ Rezeptor defizientem Knochenmark rekonstituiert wurden, ergaben eine T Zell-intrinsische Abhängigkeit von IFN-γ Rezeptor vermittelten Signalen für die Expression von IFN-γ. Die Helligkeit des Reporters dagegen wurde unabhängig von dem IFN-γ Rezeptor reguliert. Abschließend wurde ein Modell für die Expression von IFN-γ in CD4+ und CD8+ T Zellen entwickelt. Zusammenfassend führen diese Ergebnisse zu dem Schluss, dass die Expression von IFN-γ in CD4+ und CD8+ T Zellen und nach viraler oder parasitärer Infektion unterschiedlich reguliert wird. Zusätzlich wurde gezeigt, dass der IFN-γ Rezeptor an der Modulation der IFN-γ Expression beteiligt ist. / IFN-γ is the signature cytokine of Th1 and CD8+ effector cells generated in type I immune responses against pathogens, such as Influenza virus, Sendai virus and the intracellular protozoan parasite Toxoplasma gondii. Understanding the regulation of IFN-γ is critical for the manipulation of immune responses, prevention of immunopathology and for vaccine design. In the present thesis, IFN-γ expression by CD4+ and CD8+ T cells was characterized in detail and the requirement of IFN-γ receptor mediated functions for IFN-γ expression was assessed. Bicistronic IFN-γ-eYFP reporter mice, which allow direct identification and isolation of live IFN-γ expressing cells, were used to visualize IFN-γ expression in vitro and in vivo after infection with the afore mentioned pathogens. Expression of the IFN-γ-eYFP reporter by CD4+ and CD8+ T cells was broadly heterogeneous in vitro and in vivo after infection. Increased expression of the reporter correlated positively with the abundance of IFN-γ transcripts and IFN-γ protein production upon stimulation. eYFP reporter brightness reflected the potential for IFN-γ production, but actual secretion was largely dependent on antigenic stimulation. Increased expression of the reporter also correlated with enhanced secretion of additional proinflammatory cytokines and chemokines and cell surface expression of markers that indicate recent activation. Highly eYFP fluorescent cells were generally more differentiated and their anatomical distribution was restricted to certain tissues. The anatomical restriction depended on the pathogen. IFN-γ expressing CD4+ and CD8+ T cells were generated in IFN-γ receptor deficient reporter mice after infection with Sendai virus or Toxoplasma gondii. However, in the absence of IFN-γ receptor mediated functions, the frequency and brightness of the eYFP reporter expression was altered. Dual BM chimeric mice, reconstituted with wild-type and IFN-γ receptor deficient reporter BM, revealed a T cell-intrinsic requirement for the IFN-γ receptor for optimal IFN-γ expression. Reporter fluorescence intensities were regulated independently of IFN-γ receptor mediated functions. Finally, we propose a model for IFN-γ expression by CD4+ and CD8+ T cells. 2. SUMMARY 10 In summary, the expression of IFN-γ is differentially regulated in CD4+ and CD8+ T cells and after viral or protozoan infections. Additionally, the role of IFN-γ receptor mediated functions for the expression of IFN-γ was determined.
242

Observações sobre o uso clínico de interferon alfa como modulador da expressão de antígenos de superfície em melanoma maligno metastático

Marroni, Belmonte Juarez January 1994 (has links)
o autor avaliou a capacidade de retenção do anticorpo monoclonal22528S, o qual reconhece antígenos de alto peso molecular na. superficie de células de melanoma maligno humano, em 49 pacientes com confirmação histopatológica da neoplasia, após a administração endovenosa do anticorpo marcado com tecnécio, e posterior quantificação da captação tumor/tecido normal, através de imunocintilografia. Uma vez confirmada a segurança do método e a localização preferencial do imunoconjugado no tecido tumoral, o autor estudou o efeito do interferon alfa como modulador da expressão de antígenos de superficie e, por conseguinte, o seu potencial impacto na retenção do imunoconjugado no tecido tumoral. Utilizando o paciente como seu próprio controle, foi possível observar um incremento na retenção do imunoconjugado em sítios metastáticos pré-definidos em 8/10 pacientes. Dada a complexidade do fenômeno e o limitado número de casos estudados, optou-se pelo não tratamento estatístico dos dados e sim por sua discussão sob a forma preliminar. Pôde-se caracterizar uma tendência à maior concentração do imunoconjugado no tumor após o uso do interferon alfa. Cabe ressaltar que, em um caso, foi documentada conversão de uma metástase não-captante em uma lesão altamente captante após a administração do imunomodulador. Esta estratégia não havia sido estudada previamente em pacientes portadores desta neoplasia. Considerando a potencial aplicação diagnóstica e \ terapêutica do uso de anticorpos monoclonais em neoplasias malignas, esta observação de um efeito modulador da expressão de antígenos tumorais específicos, através da administração concomitante de interferon alfa, aumentando a retenção do anticorpo no tecido tumoral, poderá vir a representar um valioso recurso no futuro. / The author evaluated the ability of the monoclonal antibody 22825S, which recognizes high-molecular weight cell surfàce antigens in human malignant melanoma, of being retained preferentially in 49 patients with histopathologically-proven malignant melanoma, following the intravenous administration of the thecnecium-labelled monoclonal ,antibody. The retention of the immunoconjugate in the tumor versus normal tissues was measured using irrilllunocintilographic tools. Following the documentation of the safety, feasibility and preferential antibody retention in the tumor tissue of melanoma patients, the author studied the effect of alpha-interferon as a modulator of cell surface antigen expression and thus, its impact on the retention of the immunoconjugate in the tumor. Using each patient as his own control, an enhancement of antibody localization in the tumor was demonstrated in 8 out of 10 cases. Due to the complexity of this phenomenon and the limited number of patients, the author decided to describe the results as preliminary observations without application of statistical tools. Notably, the administration of alpha interferon was able to convert a "cold" but histopathologically-confirmed metastatic lesion in one patient in a highly positive site, as quantified by immunocintilography. To the knowledge of the author, the above strategy was never applied to malignant melanoma patients before. Considering the potential application of monoclonal antibodies in cancer \ diagnostic and therapy, the above mentioned provocative observation of a modulatory effect of tumor antigens expression by interferons in men, leading to an increased retention of the antibody at the tumor site, may have important applications in the future.
243

Harnessing the immune response to optimise treatment strategies in chronic hepatitis B

Gill, Upkar S. January 2018 (has links)
Chronic Hepatitis B (CHB) related cirrhosis and hepatocellular carcinoma (HCC) account for more than 750,000 deaths per year. Current therapies for CHB are limited in achieving HBsAg decline/loss and thus there remains a pressing need for curative treatment strategies. Although, Pegylated Interferon-α (Peg-IFNα) may be used, the majority of patients progress to nucleos(t)ide analogue (NUC) therapy due to treatment failure. Peg-IFNα and NUCs used in isolation act differentially on the immune response; Peg-IFNα induces NK cell activation and NUC therapy may partially restore T cell function. NK cells are important antiviral effectors, highly enriched in the liver, with the potential to regulate immunopathogenesis in persistent viral infections. Here we examined the NK cell pool in HBeAg-positive CHB patients treated with Peg-IFNα and whether changes in the NK cell repertoire are induced when patients are 'primed' with Peg-IFNα and importantly, whether these changes are sustained or further modulated long-term after switching to sequential NUC therapy. The cumulative expansion of CD56bright NK cells driven by 48-weeks of Peg-IFNα was maintained at higher than baseline levels throughout the subsequent 9 months of sequential NUCs. Peg- IFNα-expanded NK cells showed further augmentation in their expression of the activating NK cell receptors during sequential NUCs. The expansion in proliferating, functional NK cells and HBsAg reduction was greater and more pronounced following sequential NUCs than in patients treated with de novo NUCs. This highlights the potential benefit of Peg-IFNα- priming, providing mechanistic insights for the further optimisation of treatment strategies to achieve sustained responses. Sustained boosting of NK cells on sequential NUCs following Peg-IFNα-priming has not previously been described raising the potential of 'long-lived' NK cell populations in keeping with their emerging adaptive features. These findings provide a mechanistic and immunological rationale to explore combination/sequential treatment strategies for CHB, including on-treatment immune responses in the liver, whilst awaiting the emergence of new therapies in the field.
244

Phänotypische und funktionelle Charakterisierung von Alveolarmakrophagen der Ratte / Phenotypic and functional characterisation of alveolar macrophages of the rat

Mertens, Christina January 2011 (has links) (PDF)
Makrophagen spielen als Zellen der angeborenen Abwehr eine wichtige Rolle bei der Immunabwehr. Ziel dieser Arbeit war die phänotypische und funktionelle Charakterisierung von Alveolarmakrophagen der Ratte. Hierzu wurden die durch eine bronchoalveoläre Lavage gewonnenen Alveolarmakrophagen immunhistologisch und durchflusszytometrisch untersucht. Zusätzlich wurden sie in vitro mit LPS und IFN-g stimuliert. Die Produktion von Stickstoffmonoxid wurde mit dem Griess Reagenz bestimmt und die Expression von iNOS im Immunoblot nachgewiesen. Zudem wurde die Interaktion mit naiven T-Lymphozyten untersucht. Als Vergleichszellen wurden Peritonealmakrophagen verwendet. Bei den aus bronchoalveolären Lavagen gewonnenen Zellen handelte es sich eindeutig um CD68- und CD11b-positive Alveolarmakrophagen. Vollständig aktivierte Alveolarmakrophagen exprimierten zum Teil andere Oberflächenmoleküle als nicht-aktivierte. So stieg nach Stimulierung der Anteil der Makrophagen, die die kostimulatorischen Moleküle CD80 und CD86 exprimierten, auf ca. 80 Prozent an. Ebenso bildeten sie große Mengen an Stickstoffmonoxid (380 μmol/L NO nach 48 Stunden bei 1 μg/mL LPS) und exprimierten auch das Enzym iNOS. Die aktivierten Alveolarmakrophagen waren nicht in der Lage, naive T-Lymphozyten zu aktivieren. Die Stimulierung der Alveolarmakrophagen in vitro hat gezeigt, dass LPS und IFN-g in den getesteten Konzentrationen in der Lage waren, Makrophagen vollständig zu aktivieren. Die zweistufige Aktivierung von Makrophagen durch ein Priming mit IFN-g und eine darauf folgende vollständige Aktivierung mit LPS, ist bei hohen lokalen Konzentrationen auch nur mit LPS bzw. IFN- g möglich. Dies unterstreicht die besondere Bedeutung der beiden Mediatoren für die Aktivierung von Makrophagen. / Macrophages play an important role as cells of the innate immune system. The functional and phenotypic characterisation of alveolar macrophages of the rat was the purpose of this dissertation. Alveolar macrophages, extracted by bronchoalveolar lavage, were studied with immunohistologic and flow cytometric methods. In addition they were stimulated in vitro with LPS and IFN-. The production of nitrogenmonoxid was measured using the Griess Reagent System and the expression of iNOS was shown by immunoblotting. Further examinations of the interaction between alveolar macrophages and naive T lymphocytes were also performed. Peritoneal macrophages were used to perform a comparative analysis. The cells extracted by bronchoalveolar lavage are clearly alveolar macrophages (CD68 and CD11b in immunohistology almost 100 percent positive). The expression of surface proteins differed between completely activated alveolar macrophages and non-activated ones. After stimulation the amount of macrophages expressing the co-stimulatory molecules CD80 and CD86 rose up to 80 percent. Furthermore they were producing large amounts of nitrogenmonoxid (380 µmol/L NO after 48 hours with 1 µg/mL LPS) (see pictures 4.16 and 4.17) and were expressing the enzyme iNOS (picture 4.19) all of which cannot be observed for non-activated macrophages. Activated macrophages were not able to stimulate naïve T lymphocytes; explaining the absence of proliferation of T lymphocytes in MLR measurements. The in vitro stimulation of alveolar macrophages showed that LPS (125, 250, 1000 ng/mL) and IFN-g(250 ng/mL) were able to stimulate alveolar macrophages completely. The two-stage activation of macrophages utilizing IFN-gfor priming and a subsequently complete activation using LPS, is also possible using high concentrations of LPS or IFN-g alone. This points out the importance of the two mediators for the activation of macrophages.
245

Untersuchung Influenza Virus-induzierter Signalprozesse und deren Bedeutung in der Wirtszell-Abwehr / Investigation of Influenza virus induced signal-transduction processes and their role in host defense

Ehrhardt, Christina January 2002 (has links) (PDF)
Eine Influenza A Virus Infektion induziert die Expression zahlreicher Gene, einschließlich der TypI Interferone, die eine erste Abwehrlinie gegen virale Infektionen bilden. Hierbei ist IFNb das wichtigste Zytokin. IFNb wird durch einen multimeren Komplex, das Enhanceosom kontrolliert, das Bindungsstellen für die Transkriptionsfaktoren AP-1, NF-kB und IRF-3 in seiner Promotorsequenz besitzt. In früheren Arbeiten konnten wir zeigen, dass die Influenza Virus-induzierte AP-1 abhängige Genexpression über den JNK/SAPK-Signalweg erfolgt (Ehrhardt, 1999; Ludwig et al., 2001). Unter den, an DNA Elemente bindenden AP-1 Faktoren waren solche, die aufgrund von Phosphorylierung durch die JNKs reguliert werden, wie beispielsweise ATF-2. Weiterhin korrelierte die Induktion der AP-1 abhängigen Genexpression mit der starken Aktivierung von JNK und seiner upstream Regulatoren in permissiven Zellen. Die Virusmengen transfizierter und infizierter Zellen, in denen JNK inhibiert wurde, waren höher im Vergleich zu Virusmengen der Kontrollzellen. Demzufolge kann die Virus-induzierte Aktivierung von JNK und AP-1 nicht der Virusreplikation dienen, sondern gehört vielmehr zu einer antiviralen Immunantwort. Daten aus einem Virus-freien, auf Plasmiden basierenden vRNA Replikations-System deuten darauf hin, dass die JNK Aktivierung aus der Akkumulation viraler RNA resultiert. Entsprechend bewirkte die Infektion von Zellen mit einem Virus, dem das virale NS1 Protein fehlt, welches RNA binden und somit "wegfangen" kann, eine gesteigerte JNK Aktivität im Vergleich zu den Kontroll-Infektionen. Damit konnte das NS1 Protein als erstes virales Protein identifiziert werden, das der Virus- und dsRNA-induzierten Aktivierung des JNK/SAPK-Signalweges entgegen wirkt. Der Transkriptionsfaktor IRF-3 wird spezifisch infolge einer viralen Infektion aktiviert und ist daher ein potenter Kandidat, die schnelle und starke antivirale Genexpression zu regulieren. Infolge einer Influenza Virus Infektion wird IRF-3 phosphoryliert, wandert in den Kern und bindet dort an Promotoren, die die antivirale Genexpression steuern. Bislang sind die IRF-3 Kinase und zelluläre Signalwege, die eine IRF-3 Phosphorylierunge induzieren, unbekannt. Um in unserem Labor Signalmediatoren, die upstream von IRF-3 liegen, zu suchen, wurde ein IRF-3 responsives Promotor-Reportergen-Plasmid, aus dem IFNb Promotor stammend, konstruiert. Die kleine Rho-GTPase Rac1 wurde als erster nicht an RNA bindender, zellulärer Mediator identifiziert, der in die Influenza Virus-induzierte IRF-3 abhängige Genexpression involviert ist. Die Inaktivierung der Rho-GTPasen durch das spezifische Inhibitor Toxin B oder dominant negatives Rac1 resultierten in der Inhibierung der Virus- und dsRNA-induzierten IRF-3 Phosphorylierung und DNA Bindung, sowie der IRF-3 abhängigen Promotoraktivität, beispielsweise des IFNb Promotors. Damit konnten zwei wichtige Komponenten der Virus-induzierten Immunantwort identifiziert und charakterisiert werden. / Infection of cells with Influenza A virus induces the expression of a variety of genes, including the type I interferons which are a first line of defense against viral infections. IFNb, the most important cytokine, is controlled by a higher order complex, the enhanceosom, which contains binding sites for the transcription factors AP-1, NF-kB and IRF-3. We could show that the Influenza Virus induced AP-1 dependent gene expression occurs via the JNK/SAPK pathway (Ehrhardt, 1999; Ludwig et al., 2001). Among the AP-1 factors which were identified to bind their cognate DNA element during viral infection are those, that are regulated via phosphorylation by JNKs, such as ATF-2. Accordingly, the induction of AP-1 dependent gene expression correlates with a strong activation of JNK and its upstream activators MKK4 and 7 in permissive cells. Virus yields from transfected and infected cells in which JNK signaling was inhibited by different approaches were higher compared to the levels from control cells. Therefore we conclude that virus-induced activation of JNK and AP-1 is not exploited by the virus to support its replication but rather is required for the innate antiviral immune response. Data obtained with a virus-free plasmid-based vRNA replication system indicated that JNK activation is a cause of viral RNA accumulation during infection. This was supported by the observation, that infection of cells with a virus lacking viral NS1 protein, which is known to bind and to sequester RNA from cellular signaling intermediates, caused a strongly enhanced JNK activity compared to control infections. Furthermore, the NS1 protein was identified as the first viral protein that antagonizes virus- and dsRNA-induced activation of the stress response signaling pathway mediated through Jun N-terminal kinase. IRF-3 is specificially activated in response to viral infection and is therefore the most potent candidate to regulate the fast and strong antiviral gene expression. After an Influenza virus infection IRF-3 becomes phosphorylated and migrates to the nucleus where it binds to antiviral gene promoters. However, the IRF-3 kinase and the cellular signaling pathways leading to IRF-3 phosphorylation are unknown. To investigate signaling mediators upstream of IRF-3, we have constructed an IRF-3 responsive promoter-reporter gene plasmid derived from the IFNb promoter. The small Rho-GTPase Rac1 was identified as the first non-RNA binding cellular mediator involved in the Influenza virus-induced IRF-3 dependent gene expression. Inactivation of these Rho GTPases by the specific inhibitor toxin B or dominant negative Rac1 resulted in the inhibition of virus- and dsRNA-induced IRF-3 phosphorylation and DNA binding as well as of IRF-3 dependent promoter activity, e.g. of the IFNb promoter. Thus two important components of virus-mediated immune response were identified and characterised.
246

RIP1 and FADD's Role in Innate Immunity

Hyun, Jinhee 10 May 2011 (has links)
Rapid production of type I Interferon is pivotal to initiate cellular antiviral host defense and adaptive immunity. In order to facilitate innate immune processes, a cell harbors pattern recognition receptors (PRRs) which sense distinctive forms of pathogen associated molecular patterns (PAMPs). For example, Toll like receptors (TLRs) and RIG-I like receptors (RLRs) were discovered as PRRs for pathogen derived molecules and the production of type I Interferon (IFN). To induce type I IFN, several transcription factors such as nuclear factor-kappaB (NF-ĸB), interferon regulatory factor 3 (IRF3), interferon regulatory factor 7 (IRF7), and activating protein-1 (AP-1) need to be stimulated through the specific signaling adaptors. Among them, our lab is interesting in the death domain (DD) containing proteins Receptor interacting kinase1 (RIP1) and Fas-associated death domain protein (FADD), which we showed were important for innate signaling processes. RIP1 and FADD were initially identified as Fas and TNFR interacting proteins which were involved in death receptor mediated apoptosis. Aside from apopotic function, recent publications indicate that RIP1 and FADD mediate cell survival, proliferation, and cytokine production through NF-ĸB activation. Here, we show that RIP1 and FADD are essential for efficient TLR-independent signaling. We report that RIP1 and FADD lacking MEF cells are sensitive to viral cytolysis and also exhibit impaired IFN production against dsRNA virus infection. RIP1 acts as a scaffolding protein for death receptor mediated apoptosis and NF-ĸB activation, necrosis, and innate immunity. As mentioned, we demonstrate that cells lacking RIP1 are sensitive to RNA virus infection. To understand the detailed mechanisms of RIP1 function in innate signaling, we first tested whether RIP1 is involved in RIG-I signaling. We found that RIP1 forms a complex with RIG-I in the presence of dsRNA. Additionally, we showed that RIP1 is required for optimal RIG-I and melanoma differentiation-associated protein 5 (MDA-5) activity. We also find that FADD, a RIP1 interaction protein, is implicated in innate immunity. To study the precise mechanisms of FADD in type I IFN signaling, we generated FADD variants and used luciferase reporter assays to indicate that the FADD death effector domain (DED) is crucial for IFN-β signaling. In order to identify interacting partners of FADD, yeast two hybrid assays were performed and indicated that FADD binds to protein inhibitor of activated STAT (PIAS1), part of the SUMO machinery. SUMOylation is a reversible post-translational modification of a protein by SUMO, a 100 amino acid protein. The consequence of SUMOylation alters specific proteins’ function by affecting activity, localization, stability or influencing molecular interactions by interfering with or linking to a target protein. To confirm FADD-PIAS interactions, we conducted in-vitro SUMOylation assays by using Ubc9 conjugated FADD and found possible FADD SUMOylation sites. We also discovered that FADD and SUMO are co-localized in the nucleus. This result reveals that FADD undergoes SUMOylations and its modification might regulate FADD’s function, including role in innate signaling. Furthermore, we report here that HTLV-1 Tax protein interacts with RIP1 and inhibits IFN-β inducing signaling by abrogating RIP1 and IRF7 interaction. This implies that RIP1 is involved in the regulation of IRF7 and is essential for IFN-β production. Collectively, our data demonstrate the significance of RIP1 and FADD in dsRNA recognition pathways in mammalian cells that are essential for the optimal induction of type I IFNs and other innate genes important for host defense.
247

Gamma Interferon Production by Peripheral Blood Lymphocytes in Patients with Gastric Cancer

KATO, HAJIME, MORISE, KIMITOMO, KUSUGAMI, KAZUO 03 1900 (has links)
No description available.
248

A study of innate antiviral mechanisms using fish cell lines

DeWitte-Orr, Stephanie January 2006 (has links)
Understanding basic antiviral mechanisms in vertebrates is essential for developing methods to enhance antiviral responses and promote human and animal health. In fish these antiviral mechanisms are poorly understood, but are important to understand because of the devastating impact of viral diseases on aquaculture. Therefore, the antiviral responses of a rainbow trout macrophage-like cell line, RTS11, and two non-immune cell lines, the rainbow trout fibroblast RTG-2 and Chinook salmon embryo CHSE-214 were studied. Three antiviral responses were first characterized using the viral mimic, synthetic double-stranded RNA (poly IC), and then their induction was investigated using Chum salmon reovirus (CSV). The responses were: 1) apoptosis, which is programmed cell death and a primitive antiviral defense; 2) homotypic aggregation (HA), which is clustering of like immune cells; and 3) expression of Mxs, which are antiviral proteins belonging to GTPase super-family. Some of these antiviral mechanisms were investigated using a novel continuous cell line, PBLE, developed from a peripheral blood leukocyte preparation of the American eel, <em>Anguilla rostrata</em>. <br> <br> RTS11 was exceptionally susceptible to apoptosis. The cells died at lower concentrations of poly IC and other agents, including the translation inhibitor, cycloheximide (CHX), and fungal metabolite, gliotoxin. Death was predominantly by apoptosis, as judged by DNA ladders, nuclear fragmentation, and protection by caspase inhibitors. By contrast, the other two cell lines died most commonly by necrosis, when death did occur. Co-treating RTS11 with CHX greatly sensitized the cells to poly IC. Based on the protection afforded by inhibitors of dsRNA-dependent protein kinase (PKR), RTS11 apoptosis induced by poly IC with CHX co-treatment but not gliotoxin was mediated by PKR. As macrophages are likely among the first cells to contact viruses during an infection in vivo and are mobile, the sensitivity of RTS11 to dsRNA killing could reflect a protective mechanism by which virus spread is limited by the early death of these first responders. <br><br> HA of RTS11 was induced by poly IC. HA required divalent cations and was blocked by CHX and by PKR inhibitors. This suggested that HA induction was PKR-mediated and involved the synthesis of new cell surface molecule(s), possibly galectins. As an antiviral mechanism, HA induction by dsRNA could be interpreted as an initial protective response, allowing cell localization at the site of infection, but once translation becomes inhibited, apoptosis ensues. <br><br> Mx was induced by poly IC in RTS11 and RTG-2 as judged by RT-PCR. Western blotting revealed constitutive Mx expression more consistantly in RTS11, but induction by poly IC in both cell lines. Medium conditioned by cells previously exposed to poly IC and assumed to contain interferon also induced Mx transcripts in RTS11 but not RTG-2. In RTS11, poly IC activated PKR activity, and PKR inhibitors blocked <em>Mx</em> induction, which is the first demonstration of PKR mediating Mx expression. <br><br> The dsRNA virus, CSV, also induced apoptosis, HA, and Mx expression, but in some cases contrasting with poly IC experiments. CSV induced apoptosis in RTG-2 and CHSE-214 but not in RTS11, and HA induction by CSV in RTS11 was not dependent on PKR. Mx induction was sustained in RTG-2 and transitory in RTS11; however, both cell lines supported CSV replication. <br><br> The novel cell line, PBLE, was also characterized in this study. PBLE was derived from an adherent culture of peripheral blood leukocytes from the American eel, <em>Anguilla rostrata</em>. PBLE were found to grow over a wide range of temperatures and fetal bovine serum (FBS) concentrations. This cell line was able to undergo apoptosis in response to gliotoxin. PBLE was also susceptible to a number of viruses, including CSV; however, CSV infection did not lead to apoptosis. <br><br> This study suggests that antiviral responses are likely numerous and overlapping and depend on cell type and virus. Understanding them should lead to novel methods for protecting fish from viral diseases. More specifically, using cell lines such as PBLE may aid in the understanding of species specific and perhaps even cell type specific antiviral mechanisms.
249

A study of innate antiviral mechanisms using fish cell lines

DeWitte-Orr, Stephanie January 2006 (has links)
Understanding basic antiviral mechanisms in vertebrates is essential for developing methods to enhance antiviral responses and promote human and animal health. In fish these antiviral mechanisms are poorly understood, but are important to understand because of the devastating impact of viral diseases on aquaculture. Therefore, the antiviral responses of a rainbow trout macrophage-like cell line, RTS11, and two non-immune cell lines, the rainbow trout fibroblast RTG-2 and Chinook salmon embryo CHSE-214 were studied. Three antiviral responses were first characterized using the viral mimic, synthetic double-stranded RNA (poly IC), and then their induction was investigated using Chum salmon reovirus (CSV). The responses were: 1) apoptosis, which is programmed cell death and a primitive antiviral defense; 2) homotypic aggregation (HA), which is clustering of like immune cells; and 3) expression of Mxs, which are antiviral proteins belonging to GTPase super-family. Some of these antiviral mechanisms were investigated using a novel continuous cell line, PBLE, developed from a peripheral blood leukocyte preparation of the American eel, <em>Anguilla rostrata</em>. <br> <br> RTS11 was exceptionally susceptible to apoptosis. The cells died at lower concentrations of poly IC and other agents, including the translation inhibitor, cycloheximide (CHX), and fungal metabolite, gliotoxin. Death was predominantly by apoptosis, as judged by DNA ladders, nuclear fragmentation, and protection by caspase inhibitors. By contrast, the other two cell lines died most commonly by necrosis, when death did occur. Co-treating RTS11 with CHX greatly sensitized the cells to poly IC. Based on the protection afforded by inhibitors of dsRNA-dependent protein kinase (PKR), RTS11 apoptosis induced by poly IC with CHX co-treatment but not gliotoxin was mediated by PKR. As macrophages are likely among the first cells to contact viruses during an infection in vivo and are mobile, the sensitivity of RTS11 to dsRNA killing could reflect a protective mechanism by which virus spread is limited by the early death of these first responders. <br><br> HA of RTS11 was induced by poly IC. HA required divalent cations and was blocked by CHX and by PKR inhibitors. This suggested that HA induction was PKR-mediated and involved the synthesis of new cell surface molecule(s), possibly galectins. As an antiviral mechanism, HA induction by dsRNA could be interpreted as an initial protective response, allowing cell localization at the site of infection, but once translation becomes inhibited, apoptosis ensues. <br><br> Mx was induced by poly IC in RTS11 and RTG-2 as judged by RT-PCR. Western blotting revealed constitutive Mx expression more consistantly in RTS11, but induction by poly IC in both cell lines. Medium conditioned by cells previously exposed to poly IC and assumed to contain interferon also induced Mx transcripts in RTS11 but not RTG-2. In RTS11, poly IC activated PKR activity, and PKR inhibitors blocked <em>Mx</em> induction, which is the first demonstration of PKR mediating Mx expression. <br><br> The dsRNA virus, CSV, also induced apoptosis, HA, and Mx expression, but in some cases contrasting with poly IC experiments. CSV induced apoptosis in RTG-2 and CHSE-214 but not in RTS11, and HA induction by CSV in RTS11 was not dependent on PKR. Mx induction was sustained in RTG-2 and transitory in RTS11; however, both cell lines supported CSV replication. <br><br> The novel cell line, PBLE, was also characterized in this study. PBLE was derived from an adherent culture of peripheral blood leukocytes from the American eel, <em>Anguilla rostrata</em>. PBLE were found to grow over a wide range of temperatures and fetal bovine serum (FBS) concentrations. This cell line was able to undergo apoptosis in response to gliotoxin. PBLE was also susceptible to a number of viruses, including CSV; however, CSV infection did not lead to apoptosis. <br><br> This study suggests that antiviral responses are likely numerous and overlapping and depend on cell type and virus. Understanding them should lead to novel methods for protecting fish from viral diseases. More specifically, using cell lines such as PBLE may aid in the understanding of species specific and perhaps even cell type specific antiviral mechanisms.
250

Effekte einer einmal wöchentlichen Gabe von Interferon beta-1a (AVONEX) auf die Serumspiegel von Zytokinen und Adhäsionsmolekülen gemessen mit ELISA

Mannes-Keil, Sabine Rosalia Emma. January 2009 (has links) (PDF)
Zugl.: Giessen, Universiẗat, Diss., 2009.

Page generated in 0.0724 seconds