• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Domínios intervalares da matemática computacional

Dimuro, Gracaliz Pereira January 1991 (has links)
Fundamentada a importância da utilização da Teoria dos Intervalos em computação científica, é realizada uma revisão da Teoria Clássica dos Intervalos, com críticas sobre as incompatibilidades encontradas como motivos de diversas dificuldades para desenvolvimento da própria teoria e, consequentemente, das Técnicas Intervalares. É desenvolvida uma nova abordagem para a Teoria dos Intervalos de acordo com a Teoria dos Domínios e a proposta de [ACI 89], obtendo-se os Domínios Intervalares da Matemática Computacional. Introduz-se uma topologia (Topologia de Scott) compatível com a idéia de aproximação, gerando uma ordem de informação, isto é, para quaisquer intervalos x e y, diz-se que se x -c y , então y fornece mais (no mínimo tanto quanto) informação, sobre um real r, do que x. Prova-se que esta ordem de informação induz uma topologia To (topologia de Scott) , que é mais adequada para uma teoria computacional que a topologia da Hausdorff introduzida por Moore [MOO 66]. Cada número real r é aproximado por intervalos de extremos racionais, os intervalos de informação, que constituem o espaço de informação II(Q), superando assim a regressão infinita da abordagem clássica. Pode-se dizer que todo real r é o supremo de uma cadeia de intervalos com extremos racionais “encaixados”. Assim, os reais são os elementos totais de um domínio contínuo, chamado de Domínio dos Intervalos Reais Parciais, cuja base é o espaço de informação II (Q). Cada função contínua da Análise Real é o limite de sequências de funções contínuas entre elementos da base do domínio. Toda função contínua nestes domínios constitui uma função monotônica na base e é completamente representada em termos finitos. É introduzida uma quasi-métrica que induz uma topologia compatível com esta abordagem e provê as propriedades quantitativas, além de possibilitar a utilização da noção de sequências, limites etc, sem que se precise recorrer a conceitos mais complexos. Desenvolvem-se uma aritmética, critérios de aproximação e os conceito de intervalo ponto médio, intervalo valor absoluto e intervalo diâmetro, conceitos compatíveis com esta abordagem. São acrescentadas as operações de união, interseção e as unárias. Apresenta-se um amplo estudo sobre a função intervalar e a inclusão de imagens de funções, com ênfase na obtenção de uma extensão intervalar natural contínua. Esta é uma abordagem de lógica construtiva e computacional. / The importance of Interval Theory for scientific computation is emphasized. A review of the Classical Theory is macle, including a discussion about some incompatibities that cause problems in developing interval algorithms. A new approach to the Interval Theory is developed in the light of the Theory of Domains and according to the ideas by Acióly [ACI 89], getting the Interval Domains of Computational Mathematics. It is introduced a topology (Scott Topology), which is associated with the idea of approximation, generating an information order, that is, for any intervals x and y one says that if x -c y, then "the information given by y is better or at least equal than the one given by x". One proves that this information order induces a To topology (Scott's topology) which is more suitable for a computation theory than that of Hausdorff introduced by Moore [MOO 66]. This approach has the advantage of being both of constructive logic and computational. Each real number is approximated by intervals with rational bounds, named information intervals of the Information Space II(Q), eliminating the infinite regression found in the classical approach. One can say that every real a is the supreme of a chain of rational intervals. Then, the real numbers are the total elements of a continuous domain, named the Domain of the Partial Real Intervals, whose basis is the information space II (Q). Each continuous function in the Real Analysis is the limit of sequences of continuous functions among any elements which belong to the base of the domain. In these same domains, each continuous function is monotonic on the base and it is completely represented by finite terms. It is introduced a quasi-metric that leads to a compatible topology and supplies the quantitative properties. An arithmetic, some approximation criteria, the concepts of mean point interval, absolute value interval and width interval are developed and set operations are added. The ideas of interval functions and the inclusion of ranges of functions are also presented, and a continuous natural interval extension is obtained.
2

Domínios intervalares da matemática computacional

Dimuro, Gracaliz Pereira January 1991 (has links)
Fundamentada a importância da utilização da Teoria dos Intervalos em computação científica, é realizada uma revisão da Teoria Clássica dos Intervalos, com críticas sobre as incompatibilidades encontradas como motivos de diversas dificuldades para desenvolvimento da própria teoria e, consequentemente, das Técnicas Intervalares. É desenvolvida uma nova abordagem para a Teoria dos Intervalos de acordo com a Teoria dos Domínios e a proposta de [ACI 89], obtendo-se os Domínios Intervalares da Matemática Computacional. Introduz-se uma topologia (Topologia de Scott) compatível com a idéia de aproximação, gerando uma ordem de informação, isto é, para quaisquer intervalos x e y, diz-se que se x -c y , então y fornece mais (no mínimo tanto quanto) informação, sobre um real r, do que x. Prova-se que esta ordem de informação induz uma topologia To (topologia de Scott) , que é mais adequada para uma teoria computacional que a topologia da Hausdorff introduzida por Moore [MOO 66]. Cada número real r é aproximado por intervalos de extremos racionais, os intervalos de informação, que constituem o espaço de informação II(Q), superando assim a regressão infinita da abordagem clássica. Pode-se dizer que todo real r é o supremo de uma cadeia de intervalos com extremos racionais “encaixados”. Assim, os reais são os elementos totais de um domínio contínuo, chamado de Domínio dos Intervalos Reais Parciais, cuja base é o espaço de informação II (Q). Cada função contínua da Análise Real é o limite de sequências de funções contínuas entre elementos da base do domínio. Toda função contínua nestes domínios constitui uma função monotônica na base e é completamente representada em termos finitos. É introduzida uma quasi-métrica que induz uma topologia compatível com esta abordagem e provê as propriedades quantitativas, além de possibilitar a utilização da noção de sequências, limites etc, sem que se precise recorrer a conceitos mais complexos. Desenvolvem-se uma aritmética, critérios de aproximação e os conceito de intervalo ponto médio, intervalo valor absoluto e intervalo diâmetro, conceitos compatíveis com esta abordagem. São acrescentadas as operações de união, interseção e as unárias. Apresenta-se um amplo estudo sobre a função intervalar e a inclusão de imagens de funções, com ênfase na obtenção de uma extensão intervalar natural contínua. Esta é uma abordagem de lógica construtiva e computacional. / The importance of Interval Theory for scientific computation is emphasized. A review of the Classical Theory is macle, including a discussion about some incompatibities that cause problems in developing interval algorithms. A new approach to the Interval Theory is developed in the light of the Theory of Domains and according to the ideas by Acióly [ACI 89], getting the Interval Domains of Computational Mathematics. It is introduced a topology (Scott Topology), which is associated with the idea of approximation, generating an information order, that is, for any intervals x and y one says that if x -c y, then "the information given by y is better or at least equal than the one given by x". One proves that this information order induces a To topology (Scott's topology) which is more suitable for a computation theory than that of Hausdorff introduced by Moore [MOO 66]. This approach has the advantage of being both of constructive logic and computational. Each real number is approximated by intervals with rational bounds, named information intervals of the Information Space II(Q), eliminating the infinite regression found in the classical approach. One can say that every real a is the supreme of a chain of rational intervals. Then, the real numbers are the total elements of a continuous domain, named the Domain of the Partial Real Intervals, whose basis is the information space II (Q). Each continuous function in the Real Analysis is the limit of sequences of continuous functions among any elements which belong to the base of the domain. In these same domains, each continuous function is monotonic on the base and it is completely represented by finite terms. It is introduced a quasi-metric that leads to a compatible topology and supplies the quantitative properties. An arithmetic, some approximation criteria, the concepts of mean point interval, absolute value interval and width interval are developed and set operations are added. The ideas of interval functions and the inclusion of ranges of functions are also presented, and a continuous natural interval extension is obtained.
3

Domínios intervalares da matemática computacional

Dimuro, Gracaliz Pereira January 1991 (has links)
Fundamentada a importância da utilização da Teoria dos Intervalos em computação científica, é realizada uma revisão da Teoria Clássica dos Intervalos, com críticas sobre as incompatibilidades encontradas como motivos de diversas dificuldades para desenvolvimento da própria teoria e, consequentemente, das Técnicas Intervalares. É desenvolvida uma nova abordagem para a Teoria dos Intervalos de acordo com a Teoria dos Domínios e a proposta de [ACI 89], obtendo-se os Domínios Intervalares da Matemática Computacional. Introduz-se uma topologia (Topologia de Scott) compatível com a idéia de aproximação, gerando uma ordem de informação, isto é, para quaisquer intervalos x e y, diz-se que se x -c y , então y fornece mais (no mínimo tanto quanto) informação, sobre um real r, do que x. Prova-se que esta ordem de informação induz uma topologia To (topologia de Scott) , que é mais adequada para uma teoria computacional que a topologia da Hausdorff introduzida por Moore [MOO 66]. Cada número real r é aproximado por intervalos de extremos racionais, os intervalos de informação, que constituem o espaço de informação II(Q), superando assim a regressão infinita da abordagem clássica. Pode-se dizer que todo real r é o supremo de uma cadeia de intervalos com extremos racionais “encaixados”. Assim, os reais são os elementos totais de um domínio contínuo, chamado de Domínio dos Intervalos Reais Parciais, cuja base é o espaço de informação II (Q). Cada função contínua da Análise Real é o limite de sequências de funções contínuas entre elementos da base do domínio. Toda função contínua nestes domínios constitui uma função monotônica na base e é completamente representada em termos finitos. É introduzida uma quasi-métrica que induz uma topologia compatível com esta abordagem e provê as propriedades quantitativas, além de possibilitar a utilização da noção de sequências, limites etc, sem que se precise recorrer a conceitos mais complexos. Desenvolvem-se uma aritmética, critérios de aproximação e os conceito de intervalo ponto médio, intervalo valor absoluto e intervalo diâmetro, conceitos compatíveis com esta abordagem. São acrescentadas as operações de união, interseção e as unárias. Apresenta-se um amplo estudo sobre a função intervalar e a inclusão de imagens de funções, com ênfase na obtenção de uma extensão intervalar natural contínua. Esta é uma abordagem de lógica construtiva e computacional. / The importance of Interval Theory for scientific computation is emphasized. A review of the Classical Theory is macle, including a discussion about some incompatibities that cause problems in developing interval algorithms. A new approach to the Interval Theory is developed in the light of the Theory of Domains and according to the ideas by Acióly [ACI 89], getting the Interval Domains of Computational Mathematics. It is introduced a topology (Scott Topology), which is associated with the idea of approximation, generating an information order, that is, for any intervals x and y one says that if x -c y, then "the information given by y is better or at least equal than the one given by x". One proves that this information order induces a To topology (Scott's topology) which is more suitable for a computation theory than that of Hausdorff introduced by Moore [MOO 66]. This approach has the advantage of being both of constructive logic and computational. Each real number is approximated by intervals with rational bounds, named information intervals of the Information Space II(Q), eliminating the infinite regression found in the classical approach. One can say that every real a is the supreme of a chain of rational intervals. Then, the real numbers are the total elements of a continuous domain, named the Domain of the Partial Real Intervals, whose basis is the information space II (Q). Each continuous function in the Real Analysis is the limit of sequences of continuous functions among any elements which belong to the base of the domain. In these same domains, each continuous function is monotonic on the base and it is completely represented by finite terms. It is introduced a quasi-metric that leads to a compatible topology and supplies the quantitative properties. An arithmetic, some approximation criteria, the concepts of mean point interval, absolute value interval and width interval are developed and set operations are added. The ideas of interval functions and the inclusion of ranges of functions are also presented, and a continuous natural interval extension is obtained.
4

Equações integrais via teoria de domínios: problemas direto e inverso / Integral equations in domain theory: problems direct and inverse

Antônio Espósito Júnior 23 July 2008 (has links)
Apresenta-se um estudo em Teoria de Domínios das equações integrais da forma geral f (x) = h(x)+g Z b(x) a(x) g(x, y, f (y))dy com h, a e b definidas para x ∈ [a0,b0], a0 ≤a(x)≤b(x)≤b0 e g definida para x, y ∈ [a0,b0], cujo lado direito define uma contração sobre o espaço métrico de funções reais contínuas limitadas. O ponto de partida desse trabalho é a reescrita da Análise Intervalar para Teoria de Domínios do problema de valor incial em equações diferenciais ordinárias que possuem solução como ponto fixo do operador de Picard. Com o conjunto dos números reais interpretados pelo Domínio Intervalar, as funções reais são estendidas para operarem no domínio de funçoes intervalares de variável real. Em particular, faz-se a extensão canônica do campo vetorial em relação à segunda variável. Nesse contexto, pela primeira vez tem-se o estudo das equações integrais de Fredholm e Volterra sobre o domínio de funções intervalares de variável real definida pelo operador integral intervalar com a participação da extensão canônica de g em relação à terceira variável. Adicionando ao domínio de funções intervalares sua função medição, efetua-se a análise da convergência do operador intervalar de Fredholm e Volterra em Teoria de Domínios com o cálculo da sua derivada informática em relação à medição no seu ponto fixo. Com a representação das funções intervalares em função passo constante a partir da partição do intervalo [a0,b0], reescrevese o algoritmo da Análise Intervalar em Teoria de Domínios com a introdução do cálculo da aproximação da extensão canônica de g e com o comprimento do intervalo da partição tendendo para zero. Estende-se essa abordagem mais completa do estudo das equações integrais na resolução de problemas de valores iniciais e valor de contorno em equações diferenciais ordinárias e parciais. Uma vez que para uma pequena variação do campo vetorial v ou do valor inicial y0 da equação diferencial f ′(x) = v(x, f (x)) com a condição inicial f (x0) = y0, pode-se ter uma solução tão próxima da solução f da equação quanto possível, formaliza-se pela primeira vez em Teoria de Domínios um algoritmo na resolução do problema inverso em que, conhecendo a função f , determina-se uma equação diferencial ordinária com o cálculo de um campo vetorial v tal que o operador de Picard associado mapeia f tão próxima quanto possível a ela mesma. / We present a study in Domain Theory of integral equations of the form f (x) = h(x)+g Z b(x) a(x) g(x, y, f (y))dy for a0 ≤ a(x) ≤ b(x) ≤ b0 with h, a, b defined for x ∈ [a0,b0] and g defined for x, y ∈ [a0,b0], in which the right-hand side defines a contraction on the metric space of continuous realvalued functions on [a0,b0]. The starting point of this work is to revisit Interval Analysis in Domain Theory for the initial-value problem in ordinary differential equations where a solution is expressed as a fixed point of the Picard operator. With the set of real numbers interpreted as the interval domain, real-valued functions are extended to work in the space of interval-valued functions of the real variable domain. In particular, the vector field is extended in the second argument. Under these conditions, for the first time Fredholm and Volterra integral equations have solutions expressed as fixed points of a contraction mapping in terms of the splitting on interval-valued functions of the real variable domain. The measurement for interval-valued functions of the real variable domain is considered where we can asssess the convergence properties of the interval integral operator by means of the informatic derivative. The proposed techniques are applied to more general methods in ordinary differencial equations (ODEs) and partial differential equations (PDEs). For the first time, an algorithm is proposed to provide solutions to the inverse problem for Odinary Differential Equation where, given a function f , it is found a vector field v that defines a Picard operator which maps the solution f as close as possible to itself, such that the ODE f ′(x) = v(x, f (x)) admits f as either an exact or, as closely as desired, an approximate solution.
5

Equações integrais via teoria de domínios: problemas direto e inverso / Integral equations in domain theory: problems direct and inverse

Antônio Espósito Júnior 23 July 2008 (has links)
Apresenta-se um estudo em Teoria de Domínios das equações integrais da forma geral f (x) = h(x)+g Z b(x) a(x) g(x, y, f (y))dy com h, a e b definidas para x ∈ [a0,b0], a0 ≤a(x)≤b(x)≤b0 e g definida para x, y ∈ [a0,b0], cujo lado direito define uma contração sobre o espaço métrico de funções reais contínuas limitadas. O ponto de partida desse trabalho é a reescrita da Análise Intervalar para Teoria de Domínios do problema de valor incial em equações diferenciais ordinárias que possuem solução como ponto fixo do operador de Picard. Com o conjunto dos números reais interpretados pelo Domínio Intervalar, as funções reais são estendidas para operarem no domínio de funçoes intervalares de variável real. Em particular, faz-se a extensão canônica do campo vetorial em relação à segunda variável. Nesse contexto, pela primeira vez tem-se o estudo das equações integrais de Fredholm e Volterra sobre o domínio de funções intervalares de variável real definida pelo operador integral intervalar com a participação da extensão canônica de g em relação à terceira variável. Adicionando ao domínio de funções intervalares sua função medição, efetua-se a análise da convergência do operador intervalar de Fredholm e Volterra em Teoria de Domínios com o cálculo da sua derivada informática em relação à medição no seu ponto fixo. Com a representação das funções intervalares em função passo constante a partir da partição do intervalo [a0,b0], reescrevese o algoritmo da Análise Intervalar em Teoria de Domínios com a introdução do cálculo da aproximação da extensão canônica de g e com o comprimento do intervalo da partição tendendo para zero. Estende-se essa abordagem mais completa do estudo das equações integrais na resolução de problemas de valores iniciais e valor de contorno em equações diferenciais ordinárias e parciais. Uma vez que para uma pequena variação do campo vetorial v ou do valor inicial y0 da equação diferencial f ′(x) = v(x, f (x)) com a condição inicial f (x0) = y0, pode-se ter uma solução tão próxima da solução f da equação quanto possível, formaliza-se pela primeira vez em Teoria de Domínios um algoritmo na resolução do problema inverso em que, conhecendo a função f , determina-se uma equação diferencial ordinária com o cálculo de um campo vetorial v tal que o operador de Picard associado mapeia f tão próxima quanto possível a ela mesma. / We present a study in Domain Theory of integral equations of the form f (x) = h(x)+g Z b(x) a(x) g(x, y, f (y))dy for a0 ≤ a(x) ≤ b(x) ≤ b0 with h, a, b defined for x ∈ [a0,b0] and g defined for x, y ∈ [a0,b0], in which the right-hand side defines a contraction on the metric space of continuous realvalued functions on [a0,b0]. The starting point of this work is to revisit Interval Analysis in Domain Theory for the initial-value problem in ordinary differential equations where a solution is expressed as a fixed point of the Picard operator. With the set of real numbers interpreted as the interval domain, real-valued functions are extended to work in the space of interval-valued functions of the real variable domain. In particular, the vector field is extended in the second argument. Under these conditions, for the first time Fredholm and Volterra integral equations have solutions expressed as fixed points of a contraction mapping in terms of the splitting on interval-valued functions of the real variable domain. The measurement for interval-valued functions of the real variable domain is considered where we can asssess the convergence properties of the interval integral operator by means of the informatic derivative. The proposed techniques are applied to more general methods in ordinary differencial equations (ODEs) and partial differential equations (PDEs). For the first time, an algorithm is proposed to provide solutions to the inverse problem for Odinary Differential Equation where, given a function f , it is found a vector field v that defines a Picard operator which maps the solution f as close as possible to itself, such that the ODE f ′(x) = v(x, f (x)) admits f as either an exact or, as closely as desired, an approximate solution.

Page generated in 0.1014 seconds