Spelling suggestions: "subject:"intrångsdetektion"" "subject:"änderungsdetektion""
1 |
Anomaly-based intrusion detection using Tree Augmented Naive Bayes ClassifierWester, Philip January 2021 (has links)
With the rise of information technology and the dependence on these systems, it becomes increasingly more important to keep the systems secure. The possibility to detect an intrusion with intrusion detection systems (IDS) is one of multiple fundamental technologies that may increase the security of a system. One of the bigger challenges of an IDS, is to detect types of intrusions that have previously not been encountered, so called unknown intrusions. These types of intrusions are generally detected by using methods collectively called anomaly detection methods. In this thesis I evaluate the performance of the algorithm Tree Augmented Naive Bayes Classifier (TAN) as an intrusion detection classifier. More specifically, I created a TAN program from scratch in Python and tested the program on two data sets containing data traffic. The thesis aims to create a better understanding of how TAN works and evaluate if it is a reasonable algorithm for intrusion detection. The results show that TAN is able to perform at an acceptable level with a reasonably high accuracy. The results also highlights the importance of using the smoothing operator included in the standard version of TAN. / Med informationsteknikens utveckling och det ökade beroendet av dessa system, blir det alltmer viktigt att hålla systemen säkra. Intrångsdetektionssystem (IDS) är en av många fundamentala teknologier som kan öka säkerheten i ett system. En av de större utmaningarna inom IDS, är att upptäcka typer av intrång som tidigare inte stötts på, så kallade okända intrång. Dessa intrång upptäcks oftast med hjälp av metoder som kollektivt kallas för avvikelsedetektionsmetoder. I denna uppsats utvärderar jag algoritmen Tree Augmented Naive Bayes Classifiers (TAN) prestation som en intrångsdetektionsklassificerare. Jag programmerade ett TAN-program, i Python, och testade detta program på två dataset som innehöll datatrafik. Denna uppsats ämnar att skapa en bättre förståelse för hur TAN fungerar, samt utvärdera om det är en lämplig algoritm för detektion av intrång. Resultaten visar att TAN kan prestera på en acceptabel nivå, med rimligt hög noggrannhet. Resultaten markerar även betydelsen av "smoothing operator", som inkluderas i standardversionen av TAN.
|
2 |
Utvärdering av signaturdatabaser i systemet Snort / Evaluation of Signature Databases in the System SnortSteinvall, Daniel January 2019 (has links)
Konstant uppkoppling till internet idag är en självklarhet för många världen över. Internet bidrar till en global förbindelse som aldrig tidigare varit möjligt, vilken kan tyckas vara underbart i många avseenden. Dessvärre kan denna digitala förbindelse missbrukas och användas för ondsinta ändamål vilket har lett till behov av säkerhetslösningar som bland annat nätverks-intrångsdetektionssystem. Ett av de mest omtalade verktygen som är ett exempel på ett sådant system är Snort som studeras i denna studie. Utöver analysering av Snort, evalueras även olika signaturdatabasers detektionsförmåga av angrepp. Totalt exekverades 1143 angrepp från 2008-2019 och dessa utvärderades av tre Snort-versioner daterade 2012, 2016 och 2018. Varje Snort-version analyserade angreppen med 18 signaturdatabaser daterade 2011-2019 från tre olika utgivare. Resultaten visar att det stor skillnad mellan de olika utgivarnas signaturdatabaser där den bästa detekterade runt 70% av angreppen medan den sämsta endast detekterade runt 1%. Även hur Snort konfigurerades hade stor inverkan på resultatet där Snort med för-processorn detekterade omkring 15% fler angrepp än utan den. / For many people all over the world being constantly connected to the Internet is taken for granted. The Internet connects people globally in a way that has never been possible before, which in many ways is a fantastic thing. Unfortunately, this global connection can be abused for malicious purposes which have led to the need for security solutions such as network intrusion detection systems. One prominent example of such a system is Snort which is the subject of evaluation in this thesis. This study investigates the ability of signature databases for Snort to detect cyberattacks. In total, we executed 1143 attacks released between 2008-2019 and recorded the network traffic. We then analyzed the network traffic using three versions of Snort released 2012, 2016, and 2018. For each version, we used 18 different signature databases dated 2011-2019 from three different publishers. Our results show that there are a significant difference between the different publishers’ signature databases, where the best signature database detected around 70% of the attacks and the worst only detected around 1%. The configuration of Snort also had a significant impact on the results, where Snort with the pre-processor detected about 15% more attacks than without it.
|
Page generated in 0.095 seconds