• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Active Vision through Invariant Representations and Saccade Movements

Li, Yue 08 September 2006 (has links)
No description available.
2

Représentation invariante des expressions faciales. : Application en analyse multimodale des émotions. / Invariant Representation of Facial Expressions : Application to Multimodal Analysis of Emotions

Soladié, Catherine 13 December 2013 (has links)
De plus en plus d’applications ont pour objectif d’automatiser l’analyse des comportements humains afin d’aider les experts qui réalisent actuellement ces analyses. Cette thèse traite de l’analyse des expressions faciales qui fournissent des informations clefs sur ces comportements.Les travaux réalisés portent sur une solution innovante, basée sur l’organisation des expressions, permettant de définir efficacement une expression d’un visage.Nous montrons que l’organisation des expressions, telle que définie, est universelle : une expression est alors caractérisée par son intensité et sa position relative par rapport aux autres expressions. La solution est comparée aux méthodes classiques et montre une augmentation significative des résultats de reconnaissance sur 14 expressions non basiques. La méthode a été étendue à des sujets inconnus. L’idée principale est de créer un espace d’apparence plausible spécifique à la personne inconnue en synthétisant ses expressions basiques à partir de déformations apprises sur d’autres sujets et appliquées sur le neutre du sujet inconnu. La solution est aussi mise à l’épreuve dans un environnement multimodal dont l’objectif est la reconnaissance d’émotions lors de conversations spontanées. Notre méthode a été mise en œuvre dans le cadre du challenge international AVEC 2012 (Audio/Visual Emotion Challenge) où nous avons fini 2nd, avec des taux de reconnaissance très proches de ceux obtenus par les vainqueurs. La comparaison des deux méthodes (la nôtre et celles des vainqueurs) semble montrer que l’extraction des caractéristiques pertinentes est la clef de tels systèmes. / More and more applications aim at automating the analysis of human behavior to assist or replace the experts who are conducting these analyzes. This thesis deals with the analysis of facial expressions, which provide key information on these behaviors.Our work proposes an innovative solution to effectively define a facial expression, regardless of the morphology of the subject. The approach is based on the organization of expressions.We show that the organization of expressions, such as defined, is universal and can be effectively used to uniquely define an expression. One expression is given by its intensity and its relative position to the other expressions. The solution is compared with the conventional methods based on appearance data and shows a significant increase in recognition results of 14 non-basic expressions. The method has been extended to unknown subjects. The main idea is to create a plausible appearance space dedicated to the unknown person by synthesizing its basic expressions from deformations learned on other subjects and applied to the neutral face of the unknown subject. The solution is tested in a more comprehensive multimodal environment, whose aim is the recognition of emotions in spontaneous conversations. Our method has been implemented in the international challenge AVEC 2012 (Audio / Visual Emotion Challenge) where we finished 2nd, with recognition rates very close to the winners’ ones. Comparison of both methods (ours and the winners’ one) seems to show that the extraction of relevant features is the key to such systems.
3

Anatomy of the SIFT method / L'Anatomie de la méthode SIFT

Rey Otero, Ives 26 September 2015 (has links)
Cette thèse est une analyse approfondie de la méthode SIFT, la méthode de comparaison d'images la plus populaire. En proposant un échantillonnage du scale-space Gaussien, elle est aussi la première méthode à mettre en pratique la théorie scale-space et faire usage de ses propriétés d'invariance aux changements d'échelles.SIFT associe à une image un ensemble de descripteurs invariants aux changements d'échelle, invariants à la rotation et à la translation. Les descripteurs de différentes images peuvent être comparés afin de mettre en correspondance les images. Compte tenu de ses nombreuses applications et ses innombrables variantes, étudier un algorithme publié il y a une décennie pourrait surprendre. Il apparaît néanmoins que peu a été fait pour réellement comprendre cet algorithme majeur et établir de façon rigoureuse dans quelle mesure il peut être amélioré pour des applications de haute précision. Cette étude se découpe en quatre parties. Le calcul exact du scale-space Gaussien, qui est au cœur de la méthode SIFT et de la plupart de ses compétiteurs, est l'objet de la première partie.La deuxième partie est une dissection méticuleuse de la longue chaîne de transformations qui constitue la méthode SIFT. Chaque paramètre y est documenté et son influence analysée. Cette dissection est aussi associé à une publication en ligne de l'algorithme. La description détaillée s'accompagne d'un code en C ainsi que d'une plateforme de démonstration permettant l'analyse par le lecteur de l'influence de chaque paramètre. Dans la troisième partie, nous définissons un cadre d'analyse expérimental exact dans le but de vérifier que la méthode SIFT détecte de façon fiable et stable les extrema du scale-space continue à partir de la grille discrète. En découlent des conclusions pratiques sur le bon échantillonnage du scale-space Gaussien ainsi que sur les stratégies de filtrage de points instables. Ce même cadre expérimental est utilisé dans l'analyse de l'influence de perturbations dans l'image (aliasing, bruit, flou). Cette analyse démontre que la marge d'amélioration est réduite pour la méthode SIFT ainsi que pour toutes ses variantes s'appuyant sur le scale-space pour extraire des points d'intérêt. L'analyse démontre qu'un suréchantillonnage du scale-space permet d'améliorer l'extraction d'extrema et que se restreindre aux échelles élevées améliore la robustesse aux perturbations de l'image.La dernière partie porte sur l'évaluation des performances de détecteurs de points. La métrique de performance la plus généralement utilisée est la répétabilité. Nous démontrons que cette métrique souffre pourtant d'un biais et qu'elle favorise les méthodes générant des détections redondantes. Afin d'éliminer ce biais, nous proposons une variante qui prend en considération la répartition spatiale des détections. A l'aide de cette correction nous réévaluons l'état de l'art et montrons que, une fois la redondance des détections prise en compte, la méthode SIFT est meilleure que nombre de ses variantes les plus modernes. / This dissertation contributes to an in-depth analysis of the SIFT method. SIFT is the most popular and the first efficient image comparison model. SIFT is also the first method to propose a practical scale-space sampling and to put in practice the theoretical scale invariance in scale space. It associates with each image a list of scale invariant (also rotation and translation invariant) features which can be used for comparison with other images. Because after SIFT feature detectors have been used in countless image processing applications, and because of an intimidating number of variants, studying an algorithm that was published more than a decade ago may be surprising. It seems however that not much has been done to really understand this central algorithm and to find out exactly what improvements we can hope for on the matter of reliable image matching methods. Our analysis of the SIFT algorithm is organized as follows. We focus first on the exact computation of the Gaussian scale-space which is at the heart of SIFT as well as most of its competitors. We provide a meticulous dissection of the complex chain of transformations that form the SIFT method and a presentation of every design parameter from the extraction of invariant keypoints to the computation of feature vectors. Using this documented implementation permitting to vary all of its own parameters, we define a rigorous simulation framework to find out if the scale-space features are indeed correctly detected by SIFT, and which sampling parameters influence the stability of extracted keypoints. This analysis is extended to see the influence of other crucial perturbations, such as errors on the amount of blur, aliasing and noise. This analysis demonstrates that, despite the fact that numerous methods claim to outperform the SIFT method, there is in fact limited room for improvement in methods that extract keypoints from a scale-space. The comparison of many detectors proposed in SIFT competitors is the subject of the last part of this thesis. The performance analysis of local feature detectors has been mainly based on the repeatability criterion. We show that this popular criterion is biased toward methods producing redundant (overlapping) descriptors. We therefore propose an amended evaluation metric and use it to revisit a classic benchmark. For the amended repeatability criterion, SIFT is shown to outperform most of its more recent competitors. This last fact corroborates the unabating interest in SIFT and the necessity of a thorough scrutiny of this method.
4

Domain adaptation in reinforcement learning via causal representation learning

Côté-Turcotte, Léa 07 1900 (has links)
Les progrès récents en apprentissage par renforcement ont été substantiels, mais ils dépendent souvent de l'accès à l'état. Un état est un ensemble d'informations qui fournit une description concise et complète de l'environnement, englobant tous les détails pertinents nécessaires pour que l'agent puisse prendre des décisions éclairées. Cependant, de telles données détaillées sont rarement disponibles dans les situations réelles. Les images offrent une forme de données plus réaliste et accessible, mais leur complexité pose d'importants défis dans le développement de politiques robustes et efficaces. Les méthodes d'apprentissage de représentation se sont révélées prometteuses pour améliorer l'efficacité des politiques basées sur les données de pixels. Néanmoins, les politiques peinent toujours à généraliser à de nouveaux domaines, rendant l'application de l'apprentissage par renforcement basé sur les pixels impraticable pour des scénarios du monde réel. Cela souligne le besoin urgent de s'attaquer à l'adaptation de domaine dans l'apprentissage par renforcement basé sur les pixels. Cette thèse examine le potentiel de l'apprentissage de représentation causale pour améliorer l'adaptation de domaine dans l'apprentissage par renforcement. L'idée sous-jacente est que pour que les agents s'adaptent efficacement à de nouveaux domaines, ils doivent être capables d'extraire des informations de haut niveau à partir de données brutes et de comprendre les dynamiques causales qui régulent l'environnement. Pour étudier cela, nous évaluons quatre algorithmes distincts d'apprentissage de représentation causale, chacun conçu pour capturer un niveau de structure plus détaillé dans l'espace latent, évaluant leur impact sur la performance d'adaptation de domaine. Le processus implique d'abord d'apprendre une représentation causale puis de former l'agent d'apprentissage par renforcement sur cette représentation. La performance d'adaptation de domaine de ces agents est évaluée dans deux environnements de conduite autonome : CarRacing et CARLA. Nos résultats soutiennent que l'apprentissage d'une représentation latente améliore nettement l'efficacité et la robustesse dans l'apprentissage par renforcement basé sur les pixels. De plus, ils indiquent qu'apprendre une structure causale dans l'espace latent contribue à une meilleure performance d'adaptation de domaine. Cependant, la promesse de la représentation causale pour améliorer l'adaptation de domaine est tempérée par leurs demandes computationnelles substantielles. De plus, lorsque des observations de plusieurs domaines sont disponibles, cette approche ne dépasse pas l'efficacité des méthodes plus simples. Nous avons également trouvé que les agents entraînés sur des représentations qui conservent toutes les informations de l'espace latent ont tendance à surpasser les autres, suggérant que les représentations dissociées sont préférables aux représentations invariantes. / Recent advancements in reinforcement learning have been substantial, but they often depend on access to the state. A state is a set of information that provides a concise and complete description of the environment, encompassing all relevant details necessary for the agent to make informed decisions. However, such detailed data is rarely available in real-world settings. Images present a more realistic and accessible data form, but their complexity introduces considerable challenges in developing robust and efficient policies. Representation learning methods have shown promise in enhancing the efficiency of policies based on pixel data. Nonetheless, policies continue to struggle to generalize to new domains, making the application of pixel-based reinforcement learning impractical for real-world scenarios. This highlights the urgent need to address domain adaptation in pixel-based reinforcement learning. This thesis investigates the potential of causal representation learning in improving domain adaptation in reinforcement learning. The underlying premise is that for reinforcement learning agents to adapt to new domains effectively, they must be able to extract high-level information from raw data and comprehend the causal dynamics that regulate the environment. We evaluate four distinct causal representation learning algorithms, each aimed at uncovering a more intricate level of structure within the latent space, to assess their impact on domain adaptation performance. This involves first learning a causal representation, followed by training the reinforcement learning agent on this representation. The domain adaptation performance of these agents is evaluated within two autonomous driving environments: CarRacing and CARLA. Our results support that learning a latent representation enhances efficiency and robustness in pixel-based RL. Moreover, it indicates that understanding complex causal structures in the latent space leads to improved domain adaptation performance. However, the promise of advanced causal representation in augmenting domain adaptation is tempered by its substantial computational demands. Additionally, when observations from multiple domains are available, this approach does not exceed the effectiveness of simpler methods. We also found that agents trained on representations that retain all information tend to outperform others, suggesting that disentangled representations are preferable to invariant representations.

Page generated in 0.5153 seconds