• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 9
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 64
  • 64
  • 30
  • 21
  • 12
  • 11
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Design, Implementation, and Validation of an Experimental Setup for Closed-Loop Functional Electrical Stimulation Applications

Steinmetz, Sarah 01 January 2007 (has links)
Spinal cord injury and stroke affect many people each year and can result in the loss of muscle function. Current research attempts to correct muscle paralysis through the use of mechanical braces or through open-loop stimulation methods. However, prosthetic systems that use closed-loop control strategies can offer improved functionality by accounting for the changing dynamics associated with the human body and external disturbances. In particular, closed-loop functional electrical stimulation (FES) offers the possibility of moving paralyzed muscles in a predetermined manner, allowing a paraplegic individual to regain the ability to perform some tasks. An experimental setup was designed for the development and testing of a closed-loop FES control system, as well as the characterization of muscle properties. Due to the complexities associated with using a human subject, an inverted pendulum model is utilized for this preliminary study. This model is a basic engineering control problem often used when studying postural control in humans. In particular, electrical stimuli will be applied to the gastrocnemius muscle of a frog in order to produce a contraction force that will drive an inverted pendulum and maintain its desired angle. The stimulation signal will be determined by control algorithms applied through the use of Matlab® and implemented in real-time with a data acquisition system. This setup will help provide an understanding of the muscle behavior and can be used to establish the validity of proposed controller methods.
22

Reaction Wheel Stabilized Stick / Reaktionshjuls stabiliserad pinne

Gräsberg, Pontus, Lavebratt, Bill January 2019 (has links)
Control theory can be used to make an unstable system stable. This thesis seeks to do this, where the system is a two DOF inverted pendulum with reaction wheels for stabilisation. The thesis also seeks to answer what is most important for making it stabilize for a longer period of time. It was decided that a state space controller was to be used with various sensors measuring the states. To be able to design a functioning demonstrator, a mathematical model of the system dynamics was developed. In the end the demonstrator proved to function as desired, being able to balance indefinitely. It was found that it is absolutely necessary to either give the controller a perfect set point or to implement an automatic set point. / Reglerteknik kan användas för att göra ostabila system stabila. Målet med detta projekt var att göra detta med ett system i form av en inverterad pendel med två frihetsgrader som balanseras med hjälp av två svänghjul. Projektet söker att besvara frågan om vad som är de viktigaste faktorerna för att få systemet att vara stabilt över en längre tid. En tillståndsåterkoppling användes som regulator vilket innebar att flera olika sensorer behövdes för att mäta de olika tillstånden. För att kunna konstruera en fungerande prototyp utvecklades en matematisk modell av systemet vilken användes för simulering av systemet. Till slut konstruerades en fungerade prototyp som till synes kunde balansera över oöverskådlig tid. En av de faktorer som visade sig påverka huruvida systemet uppnår stabilitet över längre tid var hur bra referenspunkt som gavs till regulatorn, det vill säga det tillstånd som regulatorn reglerar systemet mot. Det visade sig vara möjligt att implementera en självjusterande referenspunkt som gjorde systemet stabilt över tid.
23

Visual Feedback Stabilisation of a Cart Inverted Pendulum A

Ingram, Stephen D. January 2016 (has links)
Vision-based object stabilisation is an exciting and challenging area of research, and is one that promises great technical advancements in the field of computer vision. As humans, we are capable of a tremendous array of skilful interactions, particularly when balancing unstable objects that have complex, non-linear dynamics. These complex dynamics impose a difficult control problem, since the object must be stabilised through collaboration between applied forces and vision-based feedback. To coordinate our actions and facilitate delivery of precise amounts of muscle torque, we primarily use our eyes to provide feedback in a closed-loop control scheme. This ability to control an inherently unstable object by vision-only feedback demonstrates an exceptionally high degree of voluntary motor skill. Despite the pervasiveness of vision-based stabilisation in humans and animals, relatively little is known about the neural strategies used to achieve this task. In the last few decades, with advancements in technology, we have tried to impart the skill of vision-based object stabilisation to machines, with varying degrees of success. Within the context of this research, we continue this pursuit by employing the classic Cart Inverted Pendulum; an inherently unstable, non-linear system to investigate dynamic object balancing by vision-only feedback. The Inverted Pendulum is considered to be one of the most fundamental benchmark systems in control theory; as a platform, it provides us with a strong, well established test bed for this research. We seek to discover what strategies are used to stabilise the Cart Inverted Pendulum, and to determine if these strategies can be deployed in Real-Time, using cost-effective solutions. The thesis confronts, and overcomes the problems imposed by low-bandwidth USB cameras; such as poor colour-balance, image noise and low frame rates etc., to successfully achieve vision-based stabilisation. The thesis presents a comprehensive vision-based control system that is capable of balancing an inverted pendulum with a resting oscillation of approximately ±1º. We employ a novel, segment-based location and tracking algorithm, which was found to have excellent noise immunity and enhanced robustness. We successfully demonstrate the resilience of the tracking and pose estimation algorithm against visual disturbances in Real-Time, and with minimal recovery delay. The algorithm was evaluated against peer reviewed research; in terms of processing time, amplitude of oscillation, measurement accuracy and resting oscillation. For each key performance indicator, our system was found to be superior in many cases to that found in the literature. The thesis also delivers a complete test software environment, where vision-based algorithms can be evaluated. This environment includes a flexible tracking model generator to allow customisation of visual markers used by the system. We conclude by successfully performing off-line optimization of our method by means of Artificial Neural Networks, to achieve a significant improvement in angle measurement accuracy. / Goodrich Engine Control Systems and Balfour Beatty Rail Technologies
24

Influencing kinetic energy using ankle-foot orthoses to help improve walking after stroke: a pilot study / 脳卒中後の歩行改善のための短下肢装具の使用は運動エネルギーに影響を与える:試験的研究

Kimura, Nodoka 23 May 2022 (has links)
京都大学 / 新制・課程博士 / 博士(人間健康科学) / 甲第24095号 / 人健博第102号 / 新制||人健||7(附属図書館) / 京都大学大学院医学研究科人間健康科学系専攻 / (主査)教授 市橋 則明, 教授 稲富 宏之, 教授 松田 秀一 / 学位規則第4条第1項該当 / Doctor of Human Health Sciences / Kyoto University / DFAM
25

Sliding mode control in mechanical, electrical and, thermal distributed processes

Rao, Sachit Srinivasa 30 November 2006 (has links)
No description available.
26

From Theory to Implementation of Embedded Control Applications : A Case Study

Fize, Florian January 2016 (has links)
Control applications are used in almost all scientific domains and are subject to timing constraints. Moreover, different applications can run on the same platform which leads to even more complex timing behaviors. However, some of the timing issues are not always considered in the implementation of such applications, and this can make the system fail. In this thesis, the timing issues are considered, i.e., the problem of non-constant delay in the control of an inverted pendulum with a real-time kernel running on an ATmega328p micro-controller. The study shows that control performance is affected by this problem. In addition, the thesis, reports the adaptation of an existing real-time kernel based on an EDF (Earliest Deadline First) scheduling policy, to the architecture of the ATmega328p. Moreover, the new approach of a server-based kernel is implemented in this thesis, still on the same Atmel micro-controller.
27

Dech a jeho parametry při zvýšeném nároku na posturální stabilitu / Breathing and its parameters in increased demands on postural stability

Středová, Michaela January 2014 (has links)
Title: Breathing and its parameters in increased demands on postural stability Aims: The main objective is to carry out a quantification research of wind parameters and specify mechanical parameters to compare the effect of increased postural stability claim for breath, prepare the correct research methodology and carry out independent measurements. The first part of the thesis is focused on the search process of the issue. In the second part of special research was done, where we panned respiratory parameters while standing on the ground and on unstable platform and position of markers in 3D space. Methods: 1. Measurement of respiratory parameters using lung spirometer 2. Measurement of defined points in 3D space using Qualisys technology We measured quiet breathing and consciously deep breathing when standing on the ground or when standing on a balance pad. Total 4 measurements were carried out after 20 seconds. The experiment involved 14 probands aged 22-31 years, 10 women and 4 men. The average age of the probands was 24.5 years, mean height was 172.5 cm and mean weight 68.6 kg. From our study were excluded smokers, professional players of wind instruments, professional athletes, pregnant women, children, people with chronic respiratory disease, CNS disorders, persons with motor limitations, or...
28

Details on the deterministic and stochastic stabilization of an inverted pendulum

Peretti, Débora Elisa January 2016 (has links)
Neste trabalho, uma análise quantitativa e qualitativa para a estabilização dinâmica de um pêndulo invertido com uma força externa senoidal aplicada no ponto de suspensão é feita. Inicialmente, a perturbação externa é composta de um único cosseno, então uma generalização é feita, usando uma soma de N cossenos com diferentes amplitudes e frequências. Aproximações são testadas e o tempo durante o qual o pêndulo invertido permanece estável é explorado quando N é grande, a fim de recuperar o padrão do caso onde N = 1. O caso específico de oscilações periódicas e quase periódicas, quando N = 2, é analisado e diagramas de estabilidade considerando diferentes frequências e amplitudes são estudados. Depois, um ruído Gaussiano additivo é adicionado ao sistema para que a degradação dos diagramas de estabilidade gerados por variâncias diferentes possam ser estudados. Todos os pontos deste trabalho são corroborados por simulações, as quais integram numericamente as equações de movimento do sistema através do método de Runge-Kutta de quarta ordem. Os algoritmos e detalhes extras dos métodos de integração usados são explorados numa publicação deste trabalho, a qual está apresentada, nesta dissertação, como um apêndice. / In this work a quantitative and qualitative analysis of the dynamical stabilization of an inverted pendulum with a sinusoidal external perturbation applied at the suspension point is made. Initially, the external perturbation is composed of a single cosine, then a generalization is made using a sum of N cosines with different amplitudes and frequencies. Approximations are tested, and the time for which the inverted pendulum remains stable is explored when N is large, in order to recover the pattern of the case when N = 1. The specific case of periodic and almost periodic oscillations, when N = 2, is analysed and stability diagrams considering different frequencies and amplitudes are studied. Later, an additive Gaussian noise is added to the system so the degradation of the stability diagrams generated by different variances can be studied. All points of this work are corroborated by simulations, which numerically integrate the system’s equation of motion through a fourth order Runge-Kutta method. Algorithms and extra details on the integration methods used are explored in a publication of this work, which is presented in this thesis as an appendix.
29

Virtual Prototyping and Physical Validation of an Inverted Pendulum : "Sea-Calf Bot"

Gustavsson, Martin, Frimodig, Viktor January 2015 (has links)
The work is motivated by the goal of linking reality and model, and to see if there is an opportunity to develop an inexpensive educational tool for training in cyber-physical systems. This project has investigated the possibilities to build a cheap inverted pendulum with controller and connect this with the modeling language Acumen. Acumen models is used for comparison with the actual prototype. To solve these problems has a 3D printer been used to create hardware, Arduino UNO for control and Raspberry Pi for enable communication with Acumen over WLAN. The result was a cheap inverted pendulum, which can be built for a cost around 750 SEK. Graphs created in Acumen and from data collected from sensors can be analyzed. With a model of the inverted pendulum system, the results show that Acumen can be used in the development of cyber-physical systems. There are differences between model and reality but also similarities. / Arbetet motiveras av målet att knyta samman verklighet och modell, samt att se om det finns möjlighet att utveckla ett billigt utbildningsverktyg för utbildning i cyberfysiska system. Detta projekt har undersökt möjligheter att bygga en billig inverterad pendel med regulator samt koppla samman denna med modelleringsspråket Acumen. I Acumen skapa en modell av systemet och jämföra den med en fysisk prototyp. För att lösa dessa problem har en 3D skrivare använts för att skapa hårdvara. Arduino UNO för styrning och Raspberry Pi för att möjligöra kommunikation med Acumen över WLAN. Resultatet blev en billig inverterad pendel, som kan byggas för en kostnad runt 750 kr. Grafer från Acumen, och från data samlad från sensorer kan analyseras. Med en modell av en inverterad pendel visar resultaten att Acumen kan användas i utveckling av cyberfysiska system. Skillnader finns mellan modell och verklighet men även likheter.
30

Έλεγχος ανεστραμμένου εκκρεμούς

Πουλημενέας, Δημήτριος 19 October 2012 (has links)
Η παρούσα διπλωματική αφορά στον έλεγχο του ανεστραμμένου εκκρεμούς. Γίνεται μια σύντομη σύνοψη της σχετικής θεωρίας και ακολούθως ασχολείται αρχικά με τη σταθεροποίηση του γραμμικοποιημένου, γύρω από την ασταθή κατακόρυφη θέση ισορροπίας, συστήματος και στη συνέχεια με τη μελέτη δύο διαφορετικής λογικής ελέγχων για την πλήρη λύση του προβλήματος ελέγχου του εκκρεμούς, δηλαδή αφ’ ενός την ανύψωση και αφ’ ετέρου τη σταθεροποίηση του. Γίνεται και μια προσπάθεια εκτίμησης της περιοχής ελκτικότητας του συστήματος για κάποιους ελέγχους / In the present thesis the control of an inverted pendulum is presented. A brief summary of the relevant theory is presented. In the following the stabilization of the linearized system around the unstable upright position is developed. Furthermore, the study of two different control approaches for the complete solution of the pendulum; the swing up phase and stabilization phase. Lastly an effort for the rough estimation of the region of attraction is attempted

Page generated in 0.0719 seconds