• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Genetic Characterization and Analysis of Cis and Trans-elements That Facilitate Genome Stability in Saccharomyces cerevisiae

Jones, Hope January 2010 (has links)
Chromosomal fragile sites are specific loci associated with a high frequency of breakage and recombination. A cell's ability to repair and/or replicate through a lesion is prerequisite to the maintenance of genomic stability. An improved understanding of fragile site biology and its contribution to replication defects and genomic instability is critical for prevention, intervention, and diagnosis of genetic diseases such as cancer. This work seeks to identify and characterize both trans and cis fragile sites associated elements involved in instability onset and progression. An array of Saccharomyces cerevisiae isogenic DNA repair deficient mutants were utilized to identify genes contributing to the stability or instability of a natural fragile site ~ 403 kb from the left telomere on chromosome VII. Findings suggest that the RAD52 epistasis group, the MRX complex, non-homologous end-joining (NHEJ) pathways, MUS81 and SGS1 helicases, translesion polymerases, and a majority of the post replication repair (PRR) proteins are all required for faithful replication of the 403 fragile site and likely other fragile sites as well. In contrast I found that MMS2, previously thought to be specific to the PRR pathway, is required to prevent the fusion of repetitive elements within the 403 site. mgs1 (homolog of the human Werner helicase interacting protein, WHIP) and pol3-13 (a subunit of the DNA polymerase delta) mutants also exhibited reduced instability in checkpoint deficient cells. These findings suggest previously uncharacterized function of Mgs1, Pol3 and Mms2 in regulation of genome regions at risk of replication damage. We further find the presence of inverted repeats (IR) are sufficient to induce instability. Two IR's proximal to the 403 site consistently fuse to generate acentric and dicentric chromosomes involving the 403 fragile site and a newly identified site on chromosome VII as well. The frequency of fusion events is aggravated by chromatin traffic stressors such as tRNA transcription induced fork stalling and replisome termination regions.
2

Fusion of Inverted Repeats Leads to Formation of Dicentric Chromosomes that Cause Genome Instability in Budding Yeast

Kaochar, Salma January 2010 (has links)
Large-scale changes are common in genomes, and are often associated with pathological disorders. In the work presented in this dissertation, I provide insights into how inverted repeat sequences in budding yeast fuse during replication. Fusion leads to the formation of dicentric chromosomes, a translocation, and other chromosomal rearrangements.Using extensive genetics and some molecular analyses, I demonstrate that dicentric chromosomes are key intermediates in genome instability of a specific chromosome in budding yeast. I provide three pieces of evidence that is consistent with this conclusion. First, I detect a recombination fusion junction that is diagnostic of a dicentric chromosome (using a PCR technique). Second, I show a strong correlation between the amount of the dicentric fragment and the frequency of instability of the entire chromosome. Third, I demonstrate that a mutant known to stabilize dicentric chromosomes suppress instability. Based on these observations, I conclude that dicentric chromosomes are intermediates in causing genome instability in this system.Next, we demonstrate that fusion of inverted repeats is general. Both endogenous and synthetic nearby inverted repeats can fuse. Using genetics, I also show that many DNA repair and checkpoint pathways suppress fusion of nearby inverted repeats and genome instability. Based on our analysis, we propose a novel mechanism for fusion of inverted repeats that we term `faulty template switching.'Lastly, I discuss two genes that are necessary for fusion of nearby inverted repeats. I identified a mutant of the Exonuclease 1 (Exo1) and a mutant of anaphase inhibitor securin (Pds1) that suppress nearby inverted repeat fusion and genome instability. Studies of Exo1 and Pds1 provide us with insights into the molecular mechanisms of fusion.Our finding that nearby inverted repeats can fuse to form dicentric chromosomes that lead to genome instability may have great implications. The generality of this fusion reaction raises the possibility that dicentric chromosomes formed by inverted repeats can lead to genome instability in mammalian cells, and thereby contribute to a cancer phenotype.
3

Understanding the mechanisms underlying DSB repair-induced mutagenesis at distant loci in yeast

Saini, Natalie 22 May 2014 (has links)
Increased mutagenesis is a hallmark of cancers. On the other hand, this can trigger the generation of polymorphisms and lead to evolution. Lately, it has become clear that one of the major sources of increased mutation rates in the genome is chromosomal break formation and repair. A variety of factors can contribute to the generation of breaks in the genome. A paradoxical source of breaks is the sequence composition of the genomic DNA itself. Eukaryotic and prokaryotic genomes contain sequence motifs capable of adopting secondary structures often found to be potent inducers of double strand breaks culminating into rearrangements. These regions are therefore termed fragile sequence motifs. Here, we demonstrate that in addition to being responsible for triggering chromosomal rearrangements, inverted repeats and GAA/TTC repeats are also potent sources of mutagenesis. Repeat-induced mutagenesis extends up to 8 kb on either side of the break point. Remarkably, error-prone repair of the break by Polζ reconstitutes the repeats making them a long term source of mutagenesis. Despite its negative connotations for genome stability, the mechanisms underlying the unstable nature of double strand break repair pathways are not known. Previous studies have demonstrated that break induced replication (BIR), a mechanism employed to repair broken chromosomes with only one repairable end, is highly mutagenic, undergoes frequent template switching and often yields half-crossovers. In the work presented here, we show that the instabilities inherent to BIR can be attributed to its unusual mode of synthesis. We determined that BIR proceeds via a migrating bubble with long stretches of single-stranded DNA and culminates with conservative inheritance of the newly synthesized DNA. We propose that the mechanisms described here might be important for generation of repair-associated mutagenesis in higher organisms. Secondary structure forming repeats like inverted repeats have been found to be enriched in cancer cells. These motifs often constitute chromosomal rearrangement hot-spots and demonstrate the phenomenon of kataegis. This study provides a mechanistic insight into how such breakage-prone motifs contribute to hypermutability of cancer genomes.
4

Formation of Dicentric and Acentric Chromosomes, by a Template Switch Mechanism, in Budding Yeast

Paek, Andrew Luther January 2010 (has links)
Chromosomal rearrangements occur in all organisms and are important both in the evolution of species and in pathology. In this dissertation I show that in Saccharomyces cerevisiae, or budding yeast, one type of chromosomal rearrangement occurs when inverted repeats fuse, likely during DNA replication by a novel mechanism termed "faulty template switching". This fusion can lead to the formation of either a dicentric or acentric chromosome, depending on the direction of the replication fork. Dicentric chromosomes are inherently unstable due to their abnormal number of centromeres, and thus undergo additional chromosomal rearrangements and chromosome loss.
5

Analýza lokalizace inverzních repetic v bakteriálních genomech / Analyses of inverted repeats localization in bacterial genomes

Šedý, Michal January 2021 (has links)
Inverted repeats (IR) are common part of DNA of all living prokaryotic and eukaryotic organisms. Inverted repeats plays an important role in the regulation of basics cells processes. They are responsible for formation of cruciform structures. Inverted repeats also cause genomic instability and can be a source of numerous mutations. Cruciform structures can be recognized by DNA-binding proteins and can also act as a transcriptional regulators. Using the Palindrome Analyser tool, the frequency of IR and localization of inverted repeats in bacterial genomes was analyzed. The frequency of IR across the bacterial genome is variable. The frequency of short inverted repeats shows an approximately quadratic dependence on the %GC content in the genome with a minimum of about 50% of GC content. The localization of inverted repeats with respect to “annotated features” show a non-random distribution. The frequency of IR for most features is higher “outside” than “inside”.
6

Izolace a analýza DNA se zaměřením na mikroorganismy důležité v potravinářství / DNA Isolation and Analysis Focused on Microorganisms Important in Food Production

Čutová, Michaela January 2019 (has links)
Identification of bacterial DNA consists from several steps: cell lysis, isolation and purification of DNA, precipitation by ethanol, identification of bacterial strain by PCR or other molecular biology methods. Each step must be optimised. Nucleic acids can be isolated from cells using magnetic particles. The molecules of DNA are bound to the surface of magnetic carriers by electrostatic interaction, and then they are eluted into buffer. The aim of the work will be to optimize individual steps of identification of bacterial DNA: cell lysis, DNA isolation, characterization of solid magnetic carriers functionalized by amino groups for nucleic acids isolation. The presence of DNA will be verified using agarose gel electrophoresis and the amount of eluted DNA will be determined spectrophotometrically. The quality of isolated DNA will be proved by their amplification using polymerase chain reaction (PCR). Furthermore, the thesis focuses on the study of secondary structures of nucleic acids – cruciforms structures and quadruplexes. These structures are involved in the regulation of cellular processes and their appearance is associated with cancer development and neurodegenerative diseases. In silico genome analysis was performed on important food industry microorganisms. The microorganisms genomic sequences were obtained from the NCBI (National Center for Biotechnology) database. The Palindrome Analyzer and G4 Hunter software were used for the analysis.
7

A GENOME-WIDE ANALYSIS OF PERFECT INVERTED REPEATS IN <I>ARABIDOPSIS THALIANA</I>

Sutharzan, Sreeskandarajan 12 December 2013 (has links)
No description available.

Page generated in 0.0503 seconds