• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 200
  • 22
  • 18
  • 14
  • 9
  • 6
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 324
  • 324
  • 36
  • 35
  • 34
  • 34
  • 33
  • 31
  • 30
  • 29
  • 29
  • 28
  • 27
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Expression and targeting of voltage-gated Ca2+ channels in neuroendocrine cells and pituicytes

Wang, David Daoyi 23 December 2010
Magnocellular neurosecretory cells (MNCs) are neuroendocrine cells with somata located in the hypothalamus and nerve terminals in the posterior pituitary. They receive neuronal inputs from the brain and release vasopressin and oxytocin into the blood to regulate many important functions such as water balance, lactation, and parturition. The process of hormone release depends on Ca2+ influx mediated by voltage-gated Ca2+ channels (VGCCs) on the plasma membranes of neuroendocrine cells. To better understand the cellular and molecular components that are involved in regulating secretory vesicle exocytosis, this thesis work was conducted to investigate the expression and function of different subtypes of VGCCs in MNCs and pituicytes (the glial cells surrounding MNC nerve terminals).<p> Molecular biology, immunohistochemistry and cellular biology were used to detect expression and alternative splicing of different VGCC subtypes in MNCs, neurons, and pituicytes. First, the presence of CaV2.2 and CaV2.3 channels were detected on the pituicytes in situ. When the pituicytes were isolated and cultured for 14 days, more VGCC subtypes were expressed including CaV1.2 channels. Regulation of VGCC expression was measured in normal and dehydrated rats, and CaV1.2 channels were found to be selectively up-regulated in pituicytes after 24 hours of dehydration.<p> Second, two splice variants of CaV2.1 channels (CaV2.1Ä1 and Ä2) that lack a large portion of the synprint (synaptic protein interaction) site were detected in the rat brain. To determine whether the splice variants were expressed in MNCs, we did immunocytochemistry using two antibodies (the selective and the inclusive antibody) that recognized the carboxyl-terminus of channels and the synprint site, respectively, in different cell types. We found that vasopressin MNCs, but not the oxytocin MNCs, and one type of endocrine cell (the melanotropes of the pituitary gland) expressed the synprint site deleted variants, whereas the hippocampal neurons mainly expressed the full-length isoform. The splice variants were properly distributed on the plasma membrane of the somata and nerve terminals of the MNCs, suggesting the synprint site is not essential for CaV2.1 channel targeting into the nerve terminals of neuroendocrine cells.<p> Third, expression and distribution of CaV2.2 channels were studied in the MNCs. All CaV2.2 isoforms we detected contained the full-length synprint site. To test the importance of the CASK/Mint1 binding site for CaV2.2 channel targeting, we over-expressed a peptide that inhibits the interaction between CaV2.2 channels and CASK/Mint1 in differentiated PC12 cells (a neuroendocrine cell line). We found that the distribution of CaV2.2 channels in the growth cones of PC12 cells were significantly decreased, suggesting that the CASK/Mint1 interaction is important for CaV2.2 channel targeting into the neuroendocrine terminals.<p> In conclusion, these results provide insights of VGCC expression in neuroendocrine cells, and also give rise to a better understanding of the molecular components that are involved in forming the exocytotic machinery in these cells.
162

Expression and targeting of voltage-gated Ca2+ channels in neuroendocrine cells and pituicytes

Wang, David Daoyi 23 December 2010 (has links)
Magnocellular neurosecretory cells (MNCs) are neuroendocrine cells with somata located in the hypothalamus and nerve terminals in the posterior pituitary. They receive neuronal inputs from the brain and release vasopressin and oxytocin into the blood to regulate many important functions such as water balance, lactation, and parturition. The process of hormone release depends on Ca2+ influx mediated by voltage-gated Ca2+ channels (VGCCs) on the plasma membranes of neuroendocrine cells. To better understand the cellular and molecular components that are involved in regulating secretory vesicle exocytosis, this thesis work was conducted to investigate the expression and function of different subtypes of VGCCs in MNCs and pituicytes (the glial cells surrounding MNC nerve terminals).<p> Molecular biology, immunohistochemistry and cellular biology were used to detect expression and alternative splicing of different VGCC subtypes in MNCs, neurons, and pituicytes. First, the presence of CaV2.2 and CaV2.3 channels were detected on the pituicytes in situ. When the pituicytes were isolated and cultured for 14 days, more VGCC subtypes were expressed including CaV1.2 channels. Regulation of VGCC expression was measured in normal and dehydrated rats, and CaV1.2 channels were found to be selectively up-regulated in pituicytes after 24 hours of dehydration.<p> Second, two splice variants of CaV2.1 channels (CaV2.1Ä1 and Ä2) that lack a large portion of the synprint (synaptic protein interaction) site were detected in the rat brain. To determine whether the splice variants were expressed in MNCs, we did immunocytochemistry using two antibodies (the selective and the inclusive antibody) that recognized the carboxyl-terminus of channels and the synprint site, respectively, in different cell types. We found that vasopressin MNCs, but not the oxytocin MNCs, and one type of endocrine cell (the melanotropes of the pituitary gland) expressed the synprint site deleted variants, whereas the hippocampal neurons mainly expressed the full-length isoform. The splice variants were properly distributed on the plasma membrane of the somata and nerve terminals of the MNCs, suggesting the synprint site is not essential for CaV2.1 channel targeting into the nerve terminals of neuroendocrine cells.<p> Third, expression and distribution of CaV2.2 channels were studied in the MNCs. All CaV2.2 isoforms we detected contained the full-length synprint site. To test the importance of the CASK/Mint1 binding site for CaV2.2 channel targeting, we over-expressed a peptide that inhibits the interaction between CaV2.2 channels and CASK/Mint1 in differentiated PC12 cells (a neuroendocrine cell line). We found that the distribution of CaV2.2 channels in the growth cones of PC12 cells were significantly decreased, suggesting that the CASK/Mint1 interaction is important for CaV2.2 channel targeting into the neuroendocrine terminals.<p> In conclusion, these results provide insights of VGCC expression in neuroendocrine cells, and also give rise to a better understanding of the molecular components that are involved in forming the exocytotic machinery in these cells.
163

Conotoxin overview and bioinformatic database setup

Chen, Shing-Hwei 28 November 2004 (has links)
Predatory shallow-water tropical marine snails within the genus Conus are estimated to consist of up to 700 species. These carnivorous mollusks have devised efficient venom harpoon-like radular teeth that allow them to predominantly incapacitate polychaete annelids (vermivores), in some cases fish (piscivores), or other mollusks (molluscivores) as an envenomation survival strategy for feeding, defense, and competitor deterrence. The venom of each Conus species contains a distinctive assortment of over 50 diversified disulfide-rich conotoxins with varied pharmacological specificities that selectively inhibit the function of ion channels (Ca2+, Na+, K+) or nicotinic acetylcholine receptors (nAChRs) involved in the animal neurotransmission. Across the genus Conus, the conotoxins represent an extensive array of ion channel blockers each showing an exquisite selectivity to distinguish between channels / receptors and even particular their subtypes. Novel conotoxins detected in the molecular neurobiological approach, providing chemists and pharmacologists a vast library (>50,000 individual toxins) of conotoxins have been further screened for their abilities to modify the responses of tissues to pain stimuli as a first step in describing their potential as lead compounds for novel drugs. In this article, we present the natural history of the Conus biology as well as the nomenclature, classification, structure, neurotoxicological mechanisms, post-translational modification, and pharmaceutical applications of conotoxins. In addition, we also set up the bioinformatic database and search engine about hitherto-identified name and distribution of Conus species and neuropharmacological mechanism, accession number, sequence, and 3D structure of conotoxins and provide researchers advantageous tools for further investigation.
164

Is epilepsy a preventable disorder? New evidence from animal models.

Giblin, Kathryn Anne 16 September 2010 (has links)
Epilepsy accounts for 0.5% of the global burden of disease, and primary prevention of epilepsy represents one of the three 2007 NINDS Epilepsy Research Benchmarks. Efforts to understand and intervene in the process of epileptogenesis have yielded fruitful preventative strategies in animal models. This article reviews the current understanding of epileptogenesis, introduces the concept of a "critical period" for epileptogenesis, and examines strategies for epilepsy prevention in animal models of both acquired and genetic epilepsies. As proof of principle, we investigated whether early preventative treatment during epileptogenesis in the WAG/Rij rat model of primary generalized epilepsy would persistently suppress the epilepsy phenotype in adulthood. Oral ethosuximide was given from age p21 to 5 months, covering the established period for epileptogenesis in this model. We then assessed the epilepsy phenotype by performing electroencephpalogram (EEG) recordings at serial time points after treatment cessation and by immunocytochemically measuring the cortical expression of ion channels Nav1.1, Nav1.6, and HCN1, which are dysregulated in epileptic WAG/Rij rats. Treatment both persistently suppressed seizures, even up to 3 months after treatment cessation, and blocked ion channel dysregulation. These findings indicated that treatment during epileptogenesis prevented the development of the epileptic phenotype. Subsequently, we investigated the C3H/HeJ mouse model of genetic epilepsy as a candidate for future studies in preventative treatment during epileptogenesis. Serial EEG recordings were performed from p5 to 3 months of age. We found that C3H/HeJ mice underwent three distinct, stereotyped phases of seizure development, which suggests that this model would be an appropriate candidate for future research on prevention of epileptogenesis.
165

Ionic conductances involved in the electrical activity of the canine gastrointestinal tract /

Flynn, Elaine Rose Maria January 1999 (has links)
Thesis (Ph. D.)--University of Nevada, Reno, 1999. / Includes bibliographical references. Online version available on the World Wide Web.
166

Role of endothelin-1 in the regulation of the swelling-activated Cl- current in atrial myocytes

Deng, Wu. January 1900 (has links)
Thesis (Ph.D.)--Virginia Commonwealth University, 2009. / Prepared for: Dept. of Physiology. Title from resource description page. Includes bibliographical references.
167

Ion Conductance Through Potassium Channels / Studied by Molecular Dynamics Simulations

Köpfer, David Alexander 20 April 2015 (has links)
No description available.
168

Approaches and evaluation of architectures for chemical and biological sensing based on organic thin-film field-effect transistors and immobilized ion channels integrated with silicon solid-state devices

Fine, Daniel Hayes, 1978- 28 August 2008 (has links)
There is significant need to improve the sensitivity and selectivity for detecting chemical and biological agents. This need exists in a myriad of human endeavors, from the monitoring of production of consumer products to the detection of infectious agents and cancers. Although many well established methodologies for chemical and biological sensing exist, such as mass spectrometry, gas or liquid phase chromatography, enzymelinked immunosorbent (ELISA) assays, etc., it is the goal of the work described herein to outline aspects of two specific platforms which can add two very important features, low cost and portability. The platforms discussed in this dissertation are organic semiconductor field-effect transistors (OFETS), in various architectural forms and chemical modifications, and ion channels immobilized in tethered lipid bilayers integrated with solid state devices. They take advantage of several factors to make these added features possible, low cost manufacturing techniques for producing silicon and organic circuits, low physical size requirements for the sensing elements, the capability to run such circuits on low power, and the ability of these systems to directly transduce a sensing event into an electrical signal, thus making it easier to process, interpret and record a signal. In the most basic OFET functionality, many types of organic semiconductors can be used to produce transistors, each with a slightly different range of sensitivities. When used in concert, they can produce a reversible chemical "fingerprint". These OFETS can also be integrated with silicon transistors - in a hybrid device architecture - to enhance their sensitivity while maintaining their reversibility. The organic semiconductors themselves can be chemically altered with the use of small molecule receptors designed for specific chemicals or chemical functional groups to greatly enhance the interaction of these molecules with the transistor. This increases both sensitivity and selectivity for discrete devices. Specially designed nanoscale OFET configurations with individually addressable gates can enhance the sensitivity of OFETS as well. Finally, ion channels can be selected for immobilization in tethered lipid bilayer sensors which are already inherently sensitive to the analyte of choice or can be genetically modified to include receptors for many kinds of chemical or biological agents. / text
169

THE CONTRIBUTION OF K+ ION CHANNELS AND THE Ca2+-PERMEABLE TRPM8 CHANNEL TO BREAST CANCER CELL PROLIFERATION.

Roy, Jeremy 26 October 2010 (has links)
Breast cancer is the most prevalent cancer type among Canadian women. Breast cancers originate from the malignant transformation of mammary epithelial cells, which causes them to adopt an uncontrolled cell proliferation phenotype. My research suggests that the activity of specific ion channels (KV10.1, KCa3.1 and TRPM8) contribute to the proliferation of MCF-7 cells, a cell line commonly used to study breast cancer in vitro. Pharmacologically inhibiting the activities of KV10.1 or KCa3.1 channels decreased basal, but not estrogen-stimulated [3H]-thymidine incorporation, demonstrating that these channels contribute to MCF-7 cell proliferation. One way K+ channel activity is hypothesized to control cell proliferation is via regulation of membrane potential-dependent Ca2+ influx. Inhibition of KCa3.1 but not KV10.1 channel activity resulted in a membrane potential-dependent decrease in basal Ca2+ influx, suggesting that the way in which KCa3.1 channels contribute to cell proliferation is via regulating Ca2+ influx. In addition, my research also demonstrated that TRAM-34 increased or decreased cell proliferation depending on the concentration used and mitogenesis by TRAM-34 was blocked by estrogen receptor antagonists. TRAM-34 increased progesterone receptor mRNA expression, decreased estrogen receptor-alpha mRNA expression and reduced the binding of radiolabelled estrogen to estrogen receptor protein, in each case mimicking the effects of estrogen. Our finding that TRAM-34 is able to activate the estrogen receptor suggests a novel action of this supposedly specific K+ channel inhibitor and raises concerns of interpretation in its use. TRPM8 channels were also identified in MCF-7 cells, where they appeared to be important Ca2+ entry pathways. Inhibiting the activity of TRPM8 pharmacologically, as well as knocking down TRPM8 mRNA expression decreased cell proliferation, indicating that TRPM8 also contributed to MCF-7 cell proliferation. In conclusion, my research demonstrates that the activities of KV10.1, KCa3.1 and TRPM8 channels contribute to basal breast cancer cell proliferation. These findings suggest that the activity of specific ion channels may be potential targets for future therapeutic agents to treat breast cancer.
170

Electrophysiological Properties of a Quail Neuroretina Cell Line (QNR/D): Effects of Growth Hormone?

Andres, Alexis D Unknown Date
No description available.

Page generated in 0.0518 seconds