• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 200
  • 22
  • 18
  • 14
  • 9
  • 6
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 324
  • 324
  • 36
  • 35
  • 34
  • 34
  • 33
  • 31
  • 30
  • 29
  • 29
  • 28
  • 27
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Biomechanical Micromotion at the Neural Interface Modulates Intercellular Membrane Potential In-Vivo

January 2020 (has links)
abstract: Brain micromotion is a phenomenon that arises from basic physiological functions such as respiration (breathing) and vascular pulsation (pumping blood or heart rate). These physiological processes cause small micro displacements of 2-4µm for vascular pulsation and 10-30µm for respiration, in rat models. One problem related to micromotion is the instability of the probe and its ability to acquire stable neural recordings in chronic studies. It has long been thought the membrane potential (MP) changes due to micromotion in the presence of brain implants were an artefact caused by the implant. Here is shown that intracellular membrane potential changes are a consequence of the activation of mechanosensitive ion channels at the neural interface. A combination of aplysia and rat animal models were used to show activation of mechanosensitive ion channels is occurring during a neural recording. During simulated micromotion of displacements of 50μm and 100μm at a frequency of 1 Hz, showed a change of 8 and 10mV respectively and that the addition of Ethylenediaminetetraacetic acid (EDTA) inhibited the membrane potential changes. The application of EDTA showed a 71% decrease in changes in membrane potential changes due to micromotion. Simulation of breathing using periodic motion of a probe in an Aplysia model showed that there were no membrane potential changes for <1.5kPa and action potentials were observed at >3.1kPa. Drug studies utilizing 5-HT showed an 80% reduction in membrane potentials. To validate the electrophysiological changes due to micromotion in a rat model, a double barrel pipette for simultaneous recording and drug delivery was designed, the drug delivery tip was recessed from the recording tip no greater than 50μm on average. The double barrel pipette using iontophoresis was used to deliver 30 μM of Gadolinium Chloride (Gd3+) into the microenvironment of the cell. Here is shown a significant reduction in membrane potential for n = 13 cells across 4 different rats tested using Gd3+. Membrane potential changes related to breathing and vascular pulsation were reduced between approximately 0.25-2.5 mV for both breathing and heart rate after the addition of Gd3+, a known mechanosensitive ion channel blocker. / Dissertation/Thesis / Masters Thesis Biomedical Engineering 2020
202

Developing a ‘ubiquitous’ toolkit for modulating ion channel expression in health & disease

Kanner, Scott Arthur January 2021 (has links)
Protein stability is critical for the proper function of all proteins in the cell. Ubiquitin is a key post-translational modification that serves as a universal regulator of protein turnover and has emerged as a highly sought-after signal for biological inquiry and drug development. Yet the pervasive role of ubiquitin signaling has given rise to the fundamental challenge of selectively manipulating a widespread signal: current pharmacological and genetic tools that target the ubiquitin-proteasome system (UPS) broadly alter cellular proteostasis with confounding side effects. Ion channels are essential proteins that regulate fundamental cellular properties including; electrical activity, fluid homeostasis, muscle contraction, neuronal firing, gastric acidification, and gene expression. Enhanced or reduced ion channel expression represents a pathological signature for a myriad of disease states, from chronic pain to cardiac arrhythmias, epilepsy, and cystic fibrosis. Although ubiquitin represents a critical mediator of ion channel expression, the inability to precisely manipulate ubiquitin modifications in situ has limited mechanistic insight and opportunities for therapeutic intervention. To address this barrier, I developed a novel nanobody-based toolset to selectively – and bidirectionally – manipulate the ubiquitin status and functional expression of target ion channels for basic study and therapeutic rescue.
203

Modulation of a model ligand-gated ion channel by amphetamine derivatives

Karlsson, Emelia January 2022 (has links)
Pentameric ligand-gated ion channels are critical mediators of electrochemical signal transduction in neurons and other excitable cells, causing them to be important targets of psychoactive drugs. Structural data for these complex proteins are limited, particularly among eukaryotic family members and for the functionally critical open state. These data limitations cause knowledge gaps regarding the mechanisms of ion channel opening, gating, and modulation. However, a newly discovered bacterial family member, known as sTeLIC, shares numerous structural features with its eukaryotic relatives in our central nervous system. A recently solved electron microscopy structure depicts sTeLIC in an apparent open state with binding pockets in its extracellular domain, compatible with binding a drug with structural similarities to amphetamines, like the 4-bromoamphetamine. This project aims to provide the first structure-function evidence for direct modulation of a pentameric ligand-gated ion channel by an amphetamine. The two most essential tools used in this project to examine the effects of 4-bromoamphetamine on sTeLIC were Xenopus laevis oocytes and two-electrode voltage-clamp. These tools were necessary for the collection of gating and modulation data. Ion channel activities can be analysed by clamping sTeLIC injected Xenopus laevis oocytes into the two-electrode voltage-clamp since it can artificially control the membrane voltage of oocytes. Modulation data show that 4-bromoamphetamine is a bimodal allosteric potentiator, as well as an allosteric agonist. Residues Y104 and W75, located in the binding pocket, were selected by comparing the published open state model with an AlphaFold-generated non-conducting model. Mutating these into valine or alanine reduces the potentiation. One explanation may be that removing tyrosine's aromatic ring complicates retaining essential interactions in the binding pocket while swapping tryptophan for smaller residues could make it easier for the drug to stabilise the closed state.
204

Increased Antibodies for the α7 Subunit of the Nicotinic Receptor in Schizophrenia

Chandley, Michelle J., Miller, Merry N., Kwasigroch, Christine Newell, Wilson, Tracy D., Miller, Barney E. 01 April 2009 (has links)
One of the etiological theories of schizophrenia is dysregulation of the immune system. Autoantibodies specific for the α7 subunit of the nicotinic receptor could potentially contribute to the pathophysiology of the disease. In this study, positive antibodies specific for the receptor were found to exist in 23% of the patients diagnosed with schizophrenia (n = 21). On the average, levels for the antibody were elevated in the schizophrenia patient population than in controls. The data also suggests that there is a significant correlation between antibody titer and age, lending support to the neurodegenerative nature of the disease.
205

Rôle du canal calcique TRPV1 dans l’ischémie-reperfusion du myocarde / Role of TRPV1 calcium channels in myocardial ischemia-reperfusion

Tessier, Nolwenn 30 September 2019 (has links)
Au cours de l’infarctus du myocarde, aussi bien l’ischémie que la reperfusion (I/R) entrainent des dégâts irréversibles au sein du myocarde. Parmi ces lésions cellulaires, la dérégulation de l’homéostasie calcique mène à la mort cellulaire. Afin d’augmenter la récupération suite à un épisode d’I/R, le « remote », pré- et post-conditionnement ont été montré comme cardioprotecteur. En particulier, certaines stratégies basées sur des molécules pharmacologiques modulant les canaux TRPV1 (Transient Receptor Vanilloid 1) ont été utilisées. Le but de cette étude est de comprendre le rôle de TRPV1 dans la cardioprotection. Nous avons récemment montré que TRPV1 est exprimé et est fonctionnel dans des cardiomyocytes adultes de souris. En revanche, afin d’utiliser des sondes génétiques, un modèle alternatif aux cardiomyocytes a été utilisé dans cette étude : la lignée cellulaire de cardiomyoblastes de rats.Grâce à des techniques de Western blot et d’imagerie confocale, nous avons d’abord montré que TRPV1 est exprimé dans les H9C2 et semble être localisé à la membrane du réticulum endoplasmique (RE). Puis, nous avons démontré grâce à des techniques d’imagerie calcique dans le cytoplasme et le réticulum (Fura2-AM et ErGAP1 respectivement) que TRPV1 est un canal de fuite calcique fonctionnel RE. Comme la synthèse d’ATP et le métabolisme cellulaire sont dépendants des échanges de calcium (Ca2+) entre le RE et la mitochondrie, nous avons analysé le rôle de TRPV1 en mesurant le Ca2+ mitochondrial avec la sonde R-GECO. Nous avons montré que la modulation pharmacologique de TRPV1 augmente à la fois les contenus en Ca2+ cytoplasmique et mitochondrial d’au moins 20%. Enfin, nous avons effectué des séquences d’hypoxie-reoxygenation et nous avons évalué la mort cellulaire par cytométrie en flux. Nous avons montré que l’activation de TRPV1 a des effets hétérogènes sur la viabilité cellulaire alors que l’inhibition de TRPV1 augmente systématiquement la survie cellulaire, d’au moins 22%. Des évènements de Ca2+ précis et spatiotemporel du RE à la mitochondrie sont nécessaires pour initier ou réguler des multitudes de processus tels que la balance entre la mort cellulaire et la survie cellulaire. Dans cette étude, nous avons montré que TRPV1 pouvait être un de ces canaux impliqués dans cet échange de Ca2+ entre le RE et la mitochondrie et que les H9C2 sont un modèle viable pour évaluer le rôle de TRPV1 dans les flux calciques au cours de l’ischémie-reperfusion / During myocardial infarction, both I/R cause irreversible myocardial injuries. Among the cellular damages, calcium dysregulation occurs leading to cell death. To improve the recovery from I/R episodes, remote, pre- and post-conditioning are recognized to be cardioprotective. In particular, some strategies based on molecules acting on the TRPV1 channels have been used. The aim of our work is to better understand TRPV1 role in cardioprotection. We have recently demonstrated that TRPV1 is expressed and functional in adult mouse cardiomyocytes. In order to perform live imaging with genetic probes, an alternative model to cardiomyocytes was used in the present work: H9C2 cells. Thanks to Western blot and confocal microscopy, we first showed that TRPV1 is expressed in H9C2 and seems to be localized at endoplasmic reticular (ER) plasma membrane. Secondly, we demonstrated that TRPV1 is a functional ER Ca2+ leak channel via cytoplasmic and reticular Ca2+ imaging (respectively with Fura-2 and ErGAP1). As ATP synthesis and cell fate are dependent of Ca2+ exchanges between ER and mitochondria, we have analyzed the role of TRPV1 in the mitochondrial [Ca2+] using R-GECO probe. We observed that pharmacological TRPV1 modulation increases both cytosolic and mitochondrial Ca2+ contents by at least 20%. Finally, we performed hypoxia-reoxygenation sequences and we evaluated cell death by flow cytometry. We showed that TRPV1 activation has heterogeneous effects on cell viability, whereas TRPV1 inhibition always improves cell survival (at least by 22%). Precise and spatiotemporal Ca2+ release events from ER to mitochondria are required to initiate or to regulate many processes like the balance between cell death/cell survival. In the present study, we show that TRPV1 could be one of the channels involved in Ca2+ exchanges between ER and mitochondria, and that H9C2 is a valuable model to evaluate the role of TRPV1 in Ca2+ fluxes during I/R
206

On the calcium conductance of channelrhodopsins / Über die Kalziumleitfähigkeit von Kanalrhodopsinen

Fernandez Lahore, Rodrigo Gaston 08 August 2023 (has links)
Kanalrhodopsine (ChRs) sind eine Gruppe von lichtgesteuerten Ionenkanälen, die ursprünglich aus motilen Algen stammen. In ihren nativen Organismus vermitteln sie die Bewegung zu optimalen Lichtbedingungen. In der biologischen Forschung hingegen werden ChRs eingesetzt, um die Erregbarkeit spezifischer Zellen mit hoher räumlicher und zeitlicher Auflösung optisch zu steuern, ein Forschungsfeld, was als Optogenetik bezeichnet wird. Es wurden zahlreiche ChRs mit unterschiedlichen Eigenschaften charakterisiert und entwickelt, darunter solche, die selektiv für H+, Na+, K+ und Anionen sind. Im Gegensatz dazu sind bisher keine Ca2+-selektiven ChRs bekannt. In Anbetracht der Dominanz der von Kalzium in zellulären Signalwegen in allen Reichen des Lebens, würde ein Ca2+-leitendes ChR präzise Photokontrolle einer Vielzahl von zellulären Prozessen ermöglichen. In dieser Arbeit wurden Chlamydomonas reinhardtii channelrhodopsin 2 (CrChR2) Mutanten, die mit einer Erhöhung der Ca2+-Leitfähigkeit einhergehen, elektrophysiologisch charakterisiert und systematisch verglichen. Von den getesteten Varianten zeigten diejenigen, die eine Erhöhung der negativen Ladung am Selektivitätsfilter des Kanals, dem zentralen Tor, verursachen, erhebliche Auswirkungen auf die Leitfähigkeit für Ca2+ bei negativen Membranspannungen. Daraufhin wurden gezielt homologe Mutationen an mehreren verwandten ChRs eingeführt wodurch erfolgreich zwei Kalzium-durchlässige Kanalrhodopsine (CapChR1 und 2) erzeugt werden konnten. Die erweiterte Charakterisierung der CapChRs ergab eine unterdrückte Na+-Leitfähigkeit und eine erhöhte Ca2+-Durchlässigkeit bei negativen Spannungen. Bei niedrigen extrazellulären Konzentrationen des zweiwertigen Kations zeigten Kalzium-Imaging Experimente die Überlegenheit von CapChR2 bei der Vermittlung des durch Licht ausgelösten Ca2+-Einstroms in kultivierten Zellen. / Channelrhodopsins (ChRs) constitute a group of light-gated ion channels originating from motile algae. In their native organisms, they mediate movement towards optimal light conditions. In biological research, ChRs are employed to optically control excitability of specific cells with a high spatiotemporal resolution in a field commonly referred to as optogenetics. Numerous ChRs with varying properties have been characterized and engineered, including members that are selective for H+, Na+, K+ or anions. In contrast, no Ca2+-selective ChRs have been reported to date. Given the dominance of calcium signaling across the kingdoms of life, a Ca2+-conducting ChRs would enable precise photocontrol of a multitude of cellular processes. In this work, mutants of Chlamydomonas reinhardtii channelrhodopsin 2 (CrChR2) associated with an increase in Ca2+-conductance were characterized via electrophysiology and compared systematically. Out of the tested variants, those increasing the negative electric charge at the selectivity filter of the channel, the central gate, were found to have substantial effects on the conductance for Ca2+ at negative membrane voltages. Subsequently, targeted mutations on several related ChRs were introduced in order to produce two calcium-permeable channelrhodopsins (CapChR1 and 2). Extended characterization of the engineered CapChRs revealed suppressed Na+ conductance and increased Ca2+ permeation at negative voltages. At low extracellular concentrations of the divalent cation, calcium imaging experiments demonstrated the superiority of CapChR2 in mediating light-triggered Ca2+-influx in cultured cells.
207

Mechanosensitive Ion Channels as Biophysical Sensors of Muscle Satellite Cells / 筋衛星細胞における機械受容イオンチャネルに関する研究

Hirano, Kotaro 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第24637号 / 工博第5143号 / 新制||工||1982(附属図書館) / 京都大学大学院工学研究科合成・生物化学専攻 / (主査)教授 森 泰生, 教授 浜地 格, 教授 跡見 晴幸 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
208

Potassium channels and adenosine signaling in T cells of head and neck cancer patients

Newton, Hannah S. January 2020 (has links)
No description available.
209

Structural and Functional Studies of CNG channels

Hu, Zhengshan January 2023 (has links)
Ion channels are fundamental to the functioning of life, regulating processes as diverse as neural signaling, homeostasis, and environmental sensing, across the complexities of life from bacteria to the most advanced organisms. Among this vast diversity of ion channels, cyclic-nucleotide gated (CNG) channels hold particular significance and play a pivotal role in the sensory transduction across a variety of species. They transduce chemical signals into electrical signals, linking the external environment and our sensory perceptions. CNG channels were discovered almost 40 years ago and much knowledge has been gained on their physiological roles, biophysical properties, molecular characteristics, and channelopathies. However, the structural details of these channels remained elusive for a long time, mainly due to the lack of a full-length channel structure. It was only recently that atomic-resolution structures of full-length CNG channels became available, and structures of native mammalian CNG channels were only determined within the last two years. In my thesis, I use single particle cryogenic electron microscopy (cryo-EM) to determine the structures of native human cone CNGA3/CNGB3 channel in different biochemical environments and in different states, spanning the full spectrum of channel activation by its natural ligand cGMP. In addition, I use cryo-EM, electrophysiology, calcium imaging, and other biochemical techniques to characterize both wild-type and disease-associated mutant (DAM) CNG channels. Collectively, my thesis work contributes to a deeper understanding of the structural determinants of CNG channel properties, provides a detailed dissection of the CNG channel gating mechanism, demonstrates a potential CNG channel pathogenic mechanism, and calls for an interdisciplinary reevaluation of CNG channel DAMs.
210

The Organization of Kv2.1 ChannelProteins in the Membrane of Spinal Motoneurons:Regulation by Injury and Cellular Activity

Romer, Shannon Hunt 07 May 2015 (has links)
No description available.

Page generated in 0.0634 seconds