• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Structural Basis for Lipid-Dependent Uncoupling of the Nicotinic Acetylcholine Receptor

Sun, Jiayin January 2017 (has links)
In lipid membranes lacking activating lipids, the nicotinic acetylcholine receptor adopts an uncoupled conformation that binds ligand, but does not transition into an open conformation. Understanding the mechanisms of lipid-dependent uncoupling is essential to understanding lipid-nAChR interactions, which may be implicated in pathological conditions such as nicotine addition. Here, I tested two structural features of a proposed uncoupling method to elucidate the mechanism of lipid-dependent uncoupling. First, infrared measurements and electrophysiological characterization performed in prokaryotic homologues indicate that lipid sensitivity is largely controlled by the most peripheral α-helix in the transmembrane domain, M4. My data show that tighter association of M4 with the adjacent M1 and M3 transmembrane α-helices decreases a receptor’s propensity to adopt a lipid-dependent uncoupled conformation. Second, I indirectly tested the hypothesis that uncoupling results from a conformational change at the extracellular/transmembrane domain interface that leads to an increased separation between the two domains and ultimately to a constriction of the channel pore. Finally, biophysical studies presented in this dissertation shed light on the complex binding of a number of non-competitive channel blockers to the nicotinic acetylcholine receptor channel pore in both the resting and desensitized states. The data provide further insight into the structural rearrangements that occur upon uncoupling of ligand binding and gating in the nicotinic acetylcholine receptor.
2

Modulation of a model ligand-gated ion channel by amphetamine derivatives

Karlsson, Emelia January 2022 (has links)
Pentameric ligand-gated ion channels are critical mediators of electrochemical signal transduction in neurons and other excitable cells, causing them to be important targets of psychoactive drugs. Structural data for these complex proteins are limited, particularly among eukaryotic family members and for the functionally critical open state. These data limitations cause knowledge gaps regarding the mechanisms of ion channel opening, gating, and modulation. However, a newly discovered bacterial family member, known as sTeLIC, shares numerous structural features with its eukaryotic relatives in our central nervous system. A recently solved electron microscopy structure depicts sTeLIC in an apparent open state with binding pockets in its extracellular domain, compatible with binding a drug with structural similarities to amphetamines, like the 4-bromoamphetamine. This project aims to provide the first structure-function evidence for direct modulation of a pentameric ligand-gated ion channel by an amphetamine. The two most essential tools used in this project to examine the effects of 4-bromoamphetamine on sTeLIC were Xenopus laevis oocytes and two-electrode voltage-clamp. These tools were necessary for the collection of gating and modulation data. Ion channel activities can be analysed by clamping sTeLIC injected Xenopus laevis oocytes into the two-electrode voltage-clamp since it can artificially control the membrane voltage of oocytes. Modulation data show that 4-bromoamphetamine is a bimodal allosteric potentiator, as well as an allosteric agonist. Residues Y104 and W75, located in the binding pocket, were selected by comparing the published open state model with an AlphaFold-generated non-conducting model. Mutating these into valine or alanine reduces the potentiation. One explanation may be that removing tyrosine's aromatic ring complicates retaining essential interactions in the binding pocket while swapping tryptophan for smaller residues could make it easier for the drug to stabilise the closed state.
3

Structural Basis for Functional Modulation of Pentameric Ligand-gated Ion Channels

Gicheru, Yvonne W. 23 May 2019 (has links)
No description available.
4

The Structural Characterization of Two Prokaryotic Membrane Proteins: CfrA and ELIC

Carswell, Casey January 2014 (has links)
This thesis focuses on the structural and functional characterization of two integral membrane proteins; CfrA, an outer membrane TonB-dependent transporter (TBDT) from Campylobacter jejuni, and ELIC, a pentameric ligand-gated ion channel (pLGIC) from Erwinia Chrysanthemi. The spectroscopic characterization of CfrA revealed a fold consistent with the structural and biophysical properties observed for other TBDT. Both a homology model of CfrA and sequence alignments of CfrA with other ferric-enterobactin transporters suggested a unique mode of ligand binding, thus raising the possibility that C. jejuni can be specifically inhibited. To investigate the molecular determinates of binding to CfrA, I set out to crystallize CfrA. Hundreds of crystal trials led to crystals diffracting to 3.6 Å resolution, with a complete data set acquired at 5 Å resolution that led to a structural model of the CfrA β-barrel. In the second part of this thesis, I reconstituted ELIC into model membranes in order to test the role of intramembrane aromatic interactions in ELIC gating and lipid sensing. ELIC was reconstituted into both asolectin (aso-ELIC) and 1-palmitoyl-2-oleoyl phosphatidylcholine (PC-ELIC), membranes that stabilize the homologous nicotinic acetylcholine receptor (nAChR) in functional coupled versus non-functional uncoupled conformations, respectively. In both membrane environments, ELIC exhibits a mixed α-helical and β-sheet secondary structure, with a thermal denaturation intermediate between those of the nAChR and the close prokaryotic homolog, GLIC, in similar membranes. The data suggest that although ELIC has a decreased propensity to adopt an uncoupled conformation relative to the nAChR, its ability to undergo cysteamine-induced channel gating is sensitive to its lipid environment. The decreased propensity to uncouple may reflect an increased level of aromatics at the interface between the transmembrane α-helices, M1, M3, and M4. To test this hypothesis further, the level or aromatic residues at the M1, M3, and M4 interface in both GLIC and ELIC were varied, and in both cases the levels of intramembrane aromatic interactions correlated with the efficiency of coupling binding to gating. The data provide further evidence for a role of intramembrane aromatics in channel gating and in dictating the propensity of pentameric ligand-gated ion channels to adopt an uncoupled conformation.
5

Structural basis of modulation by pH and calcium in a ligand-gated ion channel

Andén, Olivia January 2021 (has links)
Pentameriska ligandstyrda jonkanaler (pLGICs) är avgörande för omvandlingen av kemisk till elektrisk signalöverföring i djurs nervsystem. Dysfunktion i dessa kanaler har visat sig vara kopplad till flera sjukdomar inklusive epilepsi, schizofreni, Alzheimers och autism, vilket gör dem till en måltavla för en mängd olika läkemedel. Att studera eukaryota kanaler är dock mycket utmanande, så upptäckten av prokaryota homologer, som är mycket lättare att studera, har därmed bidragit mycket till förståelsen för struktur och funktion hos proteiner i denna familj. I detta projekt producerades och renades en prokaryotisk pLGIC kallad DeCLIC från Escherichia coli. Strukturell bestämning av kanalen genomfördes med användning av kryo-elektronmikroskopi vid lågt pH och i närvaro av kalcium. En elektrontäthet med 3.4 Å upplösning uppnåddes och jämfördes med tidigare bestämda strukturer vid olika förhållanden i ett försök att bestämma hur proteinets struktur moduleras av kalcium och pH. Resultaten visar flera skillnader i kanalens konformation i närvaro och frånvaro av kalcium såväl som vid olika pH-värden. Dessutom antyder analys av den bestämda elektrontätheten ett möjligt intermediärt tillstånd vid lågt pH i närvaro av kalcium. / Pentameric ligand-gated ion channels (pLGICs) are crucial for the conversion of chemical to electrical signaling in the nervous system of mammals. Dysfunction in these channels has been found to be connected to several diseases including epilepsy, schizophrenia, Alzheimer’s, and autism, making them the target of a wide variety of therapeutic agents. However, studying eukaryotic channels is challenging so the discovery of prokaryotic homologs that are much easier to study has thus greatly helped in the understanding of the structure and function in this family of proteins. In this project, a prokaryotic pLGIC called DeCLIC was produced and purified from Escherichia coli. Structural determination of the channel was pursued using cryo-electron microscopy at a low pH and in the presence of calcium. An electron density at 3.4 Å resolution was achieved and compared to previously determined structures at different conditions in an attempt to determine the structural modulation of calcium and pH. Results show multiple differences in channel conformation in the presence and absence of calcium as well as in different pH conditions. Furthermore, analysis of the determined electron density suggests a possible intermediate state at low pH in the presence of calcium.
6

Advanced Fluorescence Microscopy to Study Plasma Membrane Protein Dynamics

Piguet, Joachim January 2010 (has links)
Membrane protein dynamics is of great importance for living organisms. The precise localization of proteins composing a synapse on the membrane facing a nerve terminus is essential for proper functioning of the nervous system. In muscle fibers, the nicotinic acetylcholine is densely packed under the motor nerve termini. A receptor associated protein, rapsyn, acts as a linker between the receptor and the other components of the synaptic suramolecular assembly. Advances in fluorescence microscopy have allowed to measure the behavior of a single receptor in the cell membrane. In this work single-molecule microscopy was used to track the motion of ionotropic acetylcholine (nAChR) and serotonin (5HT3R) receptors in the plasma membrane of cells. We present methods for measuring single-molecule diffusion and their analysis. Single molecule tracking has shown a high dependence of acetylcholine receptors diffusion on its associated protein rapsyn. Comparing muscle cells that either express rapsyn or are devoid of it, we found that rapsyn plays an important role on receptor immobilization. A three-fold increase of receptor mobility was observed in muscle cells devoid of rapsyn. However, in these cells, a certain fraction of immobilized receptors was also found immobile. Furthermore, nAChR were strongly confined in membrane domains of few tens of nanometers. This showed that membrane composition and membrane associated proteins influence on receptor localization. During muscle cell differentiation, the fraction of immobile nAChR diminished along with the decreasing nAChR and stable rapsyn expression levels. The importance of rapsyn in nAChR immobilization has been further confirmed by measurements in HEK 293 cells, where co-expression of rapsyn increased immobilization of the receptor. nAChR is a ligand-gated ion-channel of the Cys-loop family. In mammals, members of this receptor family share general structural and functional features. They are homo- or hetero-pentamers and form a membrane-spanning ion channel. Subunits have three major regions, an extracellular ligand binding domain, a transmembrane channel and a large intracellular loop. 5HT3R was used as a model to study the effect of this loop on receptor mobility. Single-molecule tracking experiments on receptors with progressively larger deletions in the intracellular loop did not show a dependence of the size of the loop on the diffusion coefficient of mobile receptors. However, two regions were identified to play a role in receptor mobility by changing the fractions of immobile and directed receptors. Interestingly, a prokaryotic homologue of cys-loop receptors, ELIC, devoid of a large cytoplasmic loop was found to be immobile or to show directed diffusion similar as the wild-type 5HT3R. The scaffolding protein rapsyn stabilizes nAChR clusters in a concentration dependent manner. We have measured the density and self-interactions of rapsyn using FRET microscopy. Point-mutations of rapsyn, known to provoke myopathies, destabilized rapsyn self-interactions. Rapsyn-N88K, and R91L were found at high concentration in the cytoplasm suggesting that this modification disturbs membrane association of rapsyn. A25V was found to accumulate in the endoplasmic reticulum. Fluorescent tools to measure intracellular concentration of calcium ions are of great value to study the function of neurons. Rapsyn is highly abundant at the neuromuscular junction and thus is a genuine synaptic marker. A fusion protein of rapsyn with a genetically encoded ratiometric calcium sensor has been made to probe synapse activity. This thesis has shown that the combined use of biologically relevant system and modern fluorescence microscopy techniques deliver important information on pLGIC behaviour in the cell membrane. / <p>QC 20151217</p>

Page generated in 0.1044 seconds