• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 5
  • 3
  • 2
  • Tagged with
  • 29
  • 29
  • 22
  • 10
  • 10
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Defect characterisation in multi-crystalline silicon

Lotharukpong, Chalothorn January 2015 (has links)
Electron beam induced current (EBIC) and atom probe tomography (APT) were used in this study to determine electrical activities and impurity compositions at extended defects in multicrystalline silicon (mc-Si) samples. The results provide, for the first time, information regarding the chemical species present at defects whose electrical activity has previously been measured. A new APT specimen fabrication process was developed with the ability to select a specific defect for APT analysis. Development of the APT specimen fabrication process proceeded by first selecting and optimising the preferential etching for nano-scale defect delineation. Three etchants were evaluated, namely Secco, Sirtl and Dash, from which the Secco etch was selected. Three parameters were optimised to produce etch pits with geometries that meet the requirements imposed by APT specimen fabrication methods. The optimum parameters were 0.05M potassium dichromate concentration, 20°C etch temperature, and 30sec etch time. In the second stage, marking techniques were developed in order for the defects to be located throughout the APT specimen fabrication process. However, it became apparent that the conventional APT specimen fabrication method could not be used to fabricate APT specimens containing selected defects in a mc-Si sample. This led to the development of a novel APT specimen fabrication approach which allowed APT specimens to be fabricated, reproducibly, containing grain boundaries and isolated dislocations. In order to evaluate accurately iron contamination in mc-Si, four atom probe parameters were optimised to maximise detection sensitivity: the evaporation rate, the laser beam energy, the pulse repetition rate and the specimen temperature. The optimisation process can be divided in to two parts. In the first part, a matrix of pre-sharpened single-crystal silicon specimens was subjected to a variety of experimental parameters. The optimised parameters were determined to be 0.3% evaporation rate, 0.5nJ beam energy, 160kHz repetition rate and 55K specimen temperature. The second part was to determine the iron detection efficiency –the percentage of detected Fe ions that can be correctly identified as Fe– and sensitivity using these parameters to analyse a specially prepared iron calibration specimen. The values were determined to be a detection efficiency of about 35% and sensitivity of 54ppm or 2.70x10<sup>18</sup> atom/cm<sup>3</sup>. The APT specimen fabrication process and the optimised APT analysis parameters were used to analyse four extended defects in mc-Si samples subjected to three different processing conditions, namely gold-contaminated, as-grown and phosphorus diffusion gettering (PDG). The important aspects of the analysis are listed below: • Gold was not detected at the grain boundary and its associated dislocations in the gold-contaminated specimen. The binding enthalpy of gold to such defects is thus less than 0.63eV. • Iron was not detected in any specimen. • Copper was observed at the grain boundary in the as-grown specimen in the form of individual atoms as well as clusters with diameters ranging between 4nm and 9nm. The electrical activity of the grain boundary was about 58%. • Nickel and carbon were detected at the grain boundary in the post-PDG specimen with the former having platelet structures with diameters and thicknesses ranging between 4nm-7nm and 2nm-4nm, respectively. The recombination strength of the defect was about 22%. • Two nickel clusters were found at the isolated dislocation in the post-PDG specimen. The clusters were spherical with an average diameter of 10nm. The distance between the two clusters was 35nm. The recombination strength of the defect was about 4%.
12

Atomic scale characterisation of oxide dispersion strengthened steels for fusion applications

Williams, Ceri Ann January 2012 (has links)
Reduced-activation ferritic steels are considered as the primary candidate materials for structural applications within nuclear fusion power plants. It is known that by mechanically alloying ferritic steel powder with Y (usually in the form of Y₂O₃) then consolidating the material by hot isostatic pressing, a nanoscale dispersion of oxygen rich nanoclusters as small as ~2nm is introduced into the microstructure. This vastly improves high temperature strength and creep resistance, and the nanoclusters also act as trapping sites for helium and point defects produced under irradiation. In this thesis, the evolution of the oxide nanoclusters in a Fe-14Cr-2W-0.3Ti & 0.3Y₂O₃ ODS alloy was investigated primarily using atom probe tomography. The microstructure was characterised at various points during processing to give an insight into the factors influencing the formation of the nanoclusters. It was found that the nanoclusters nucleated during the mechanical alloying stage, then followed near classical nucleation and growth mechanisms keeping the same composition of ~8%Y, ~12%Ti,~25%O and ~45%Cr throughout. The formation and evolution of 5-15nm grain boundary oxides was also observed, and these were shown to form first as Cr₂O₃ particles that subsequently transform into a Y-Ti-O based oxide on further processing. The influence of mechanical alloying with 0.5wt.%Fe₂Y rather than 0.3wt.%Y₂O₃ was also investigated, and this showed that there was no difference in the final microstructure produced provided the level of Ti in the starting powder was tightly controlled. Without sufficient Ti, the nanoclusters were Y-O based and ~6nm diameter. Both the Y-O and Y-Ti-O nanoclusters were moderately stable on annealing at 1200°C for up to 100 hours, with only minimal coarsening observed. Ti was found not to influence the coarsening rate of the nanoclusters significantly. The stability of the oxide nanoclusters under irradiation was investigated by using Fe²⁺ ion irradiation to simulate displacement cascade damage in the ODS-Eurofer material (the official European candidate material for testing in the ITER fusion test reactor). Doses up to ~6 dpa at 400°C were used, and there was no significant change to the nanocluster distribution. However segregation of Mn to dislocations was observed after irradiation. These results indicate that ODS steels are good candidate structural materials, as the microstructure is stable at high temperature and under irradiation. The starting powders, and processing parameters need to be tightly controlled in order to produce the optimal material for use in service.
13

Understanding the mechanisms of stress corrosion cracking

Kruska, Karen January 2012 (has links)
Austenitic stainless steels are frequently used in the cooling circuits of nuclear reactors. It has been found that cold-worked 304 stainless steels can be particularly susceptible to stress corrosion cracking at the operating conditions of such reactors. Despite more than 130 years of research underlying mechanisms are still not properly understood. For this reason, the effects of cold-work and applied stress on the oxidation behaviour of 304SS have been studied in this thesis. A set of samples with/without prior cold-work, and with/without stress applied during oxidation, were oxidized in autoclaves under simulated pressurised water reactor primary circuit conditions. Atom-probe tomography and analytical transmission electron microscopy were used to investigate the local chemistry and microstructure in the different samples tested. Regions containing grain boundaries, deformation bands, and matrix material in contact with the environment, were extracted from the coupon specimens with a focused ion beam machine. Cross-sections of crack tips were studied with secondary ion mass spectrometry and electron backscatter diffraction. The compositions of oxides grown along the surface and the different microstructural features were analysed. Fe-rich spinels were found at the surface and Cr-rich spinels were observed along fast diffusion paths. Ni-enrichment was found at the metal/oxide interfaces and a Ni-rich phase was detected in precipitates ahead of grain boundary oxides. Li was observed in all oxidised regions and B segregation, originating from impurities in the alloy, was observed in grain boundaries and crack tip oxides. Cavities and hydrogen associated with Ni-rich regions were found ahead of the bulk Cr-rich oxide in some of the samples. The implications of these findings for the understanding of SCC mechanisms are discussed. It is suggested that Ni precipitation as well as the presence of deformation bands may play an important role in controlling SCC susceptibility in 304 stainless steel. A modification of the film-rupture model including internal oxidation and fast diffusion along H-stabilised vacancies in strain fields at the crack front is proposed.
14

Study of early-stage precipitation in Al-Mg-Si(-Cu) alloys by 3D atom probe

Zandbergen, Mathijs Willem January 2008 (has links)
Hardness measurements and Three-Dimensional Atom Probe (3DAP) were used to characterize the early stages of precipitation in three different Al-Mg-Si alloys (Al-0.50 wt%Mg-1.00 wt%Si) with different Cu contents (0.03 wt%, 0.15 wt%, or 0.80 wt% Cu). Heat treatments were chosen to simulate an industrial production line for car body-sheet material and included natural ageing (NA), pre-ageing at 80 &deg;C (PA), paint-bake ageing at 180 &deg;C (PB) and 10 second ageing at 180 &deg;C (spike). The Cu content and the chosen heat treatments were found to influence the microstructural evolution of the alloy considerably. Based on the determined microstructures and matrix solute concentrations, mechanisms for the effect of NA, PA and Cu additions were proposed. NA had a deleterious effect on the PB hardening response, which was delayed dramatically after 20 minutes NA or longer. When the NA time was 1 minute, &beta;" precipitates were formed within 30 minutes PB resulting in high hardness of the alloy. The delay with NA time was caused by a decrease in the nucleation rate of elongated precipitates during the subsequent PB. This decrease was thought to be due to a combination of a decrease in the matrix solute concentrations and clusters acting as vacancy sinks. PA before NA improved the PB response due to the formation of a high density of short elongated precipitates. Small Mg-Si clusters were detected after both NA and PA. Clusters formed during PA were found to be, on average, Mg-richer and larger than those formed during NA. Larger clusters were found to be more stable during PB and, upon PB, to grow into nucleation sites for elongated precipitates. Application of a spike before PA resulted in faster growth of clusters during PA. Growth of clusters and nucleation of short elongated precipitates during PB was found to be enhanced with increasing Cu content when no PA was given. Cu was found to be present in all precipitates and clusters in the alloy with the highest Cu content. These precipitates were thought to be precursors to the Q' phase.
15

Utilização de técnicas de microfeixe de íons energéticos para caracterização morfológica e elementar de amostras poliméricas e tecidos biológicos

Stori, Elis Moura January 2014 (has links)
As técnicas baseadas em microfeixe de íons energéticos possuem aplicações em diferentes áreas de conhecimento, tais como materiais, biologia, neurociência, ciências ambientais, entre outros. A microssonda iônica também possui a capacidade de fabricar micro-estruturas com aplicações em biomateriais, micro-fotônica, micro-fluídica, membranas porosas e diversas outras. O Laboratório de Implantação Iônica do Instituto de Física (LII) da UFRGS (Universidade Federal do Rio Grande do Sul) conta com uma linha de microssonda iônica que dispõe de detectores para a realização de diversos tipos de experimentos: Emissão de RaiosX Induzida por Partículas (Particle Induced X-Ray Emission – PIXE), Espectroscopia de Espalhamento de Rutherford (Rutherford Backskattering Spectroscopy – RBS), Reação Nuclear (Nuclear Reaction Analysis – NRA) e Microscopia Iônica de Varredura por Transmissão (Scanning Transmission Ion Microscopy – STIM). Além disso, tem-se aperfeiçoado a técnica de micro-fabricação denominada Litografia por Feixe de Prótons (Proton Beam Writing – PBW), atualmente em substratos poliméricos. Este trabalho apresenta dois focos: um deles é a análise de fígado de peixe pela técnica de micro-PIXE. Estes fígados apresentam lesões associadas à exposição de contaminantes. Essas lesões são acompanhadas de células pigmentosas à base de metais chamadas de centros de melanomacrófagos. Observou-se que o fígado de peixe é uma amostra em potencial para estudos ambientais. Outro foco foi o estudo da técnica de STIM em películas poliméricas micro-fabricadas por PBW. Foram estudadas diferentes configurações geométricas para a técnica de STIM, bem como a utilização de feixes de H+1, He+2 e Li+3. Diferentes amostras foram preparadas, desde estruturas simples (possuindo apenas orifícios) até amostras multi-estruturadas do tipo degrau. As medidas de STIM foram comparadas com medidas de Microscopia Eletrônica de Varredura (MEV) de maneira a confirmar a viabilidade e confiabilidade dos estudos morfológicos das amostras em questão. A técnica de STIM se apresentou viável para o estudo morfológico de microestruturas fabricadas por microfeixe de íons em películas poliméricas, sendo que a melhor configuração é na geometria on-axis utilizando o íon He+2 que provê melhor resolução em energia, sem comprometer a resolução espacial. Em comparação com medidas de MEV, apresenta vantagens como maior rapidez, preservação da amostra e o poder de resolver estruturas enterradas na amostra. A similaridade entre as duas técnicas com relação às demais características faz do STIM uma excelente alternativa à mais comumente utilizada para diversas análises morfológicas de películas poliméricas. / Ion beam techniques have many applications in different areas such as materials, biology, neuroscience and environmental science among others. The ion microprobe has also the ability of fabricating microstructures with applications in the fields of biomaterials, micro-photonics, micro-fluidics, porous membranes and many others. The Ion Implantation Laboratory of the Physics Institute at UFRGS has a microprobe beamline equiped with detectors used in different techniques: Particle Induced X-Ray Emission (PIXE), Rutherford Backscattering Spectroscopy (RBS), Nuclear Reaction Analysis (NRA) and Scanning Transmission Ion Microscopy (STIM). Besides, its scanning capability makes allows the use of the micro-fabrication technique called Proton Beam Writing (PBW). Currently, this technique has been used to write micro-structures over polymers. Several projects are in progress for the development and improvement of such techniques, since the microbeam line is a recent acquisition by the laboratory. This work presents two guidelines: one of them is the analysis of fish liver through the micro-PIXE technique. These livers present injuries associated to the exposure of contaminants. The injuries are characterized by the presence of pigmented cells based on metals called melanomacrophage centers. It was observed that the fish liver is a promising sample for environmental studies. The other guideline is the study of the STIM technique on micro-fabricated polymer foils by PBW. Different geometric configurations for the STIM technique were explored, as well as the use of different ion beams (H+1, He+2 and Li+3). Different samples were prepared, ranging from simple structures (containing only one hole) to step-like multi-structured samples. STIM measurements were compared with Scanning Electron Microscopy (SEM) in order to confirm the viability and reliability of morphological studies of the samples under study. The STIM technique proved to be suitable for the morphological study of micro-structures fabricated by ion microbeam on polymeric foils. The best configuration is the on-axis geometry using He+2 beam, which provides the best energy resolution without compromising the spatial resolution. In comparison with SEM measurements, advantages such as speed of measurement, non-destructiveness and power of resolving buried structures of the sample were observed. Concerning other features, the similarities between the two techniques make STIM an excellent alternative for morphological analysis of polymeric foils.
16

Utilização de técnicas de microfeixe de íons energéticos para caracterização morfológica e elementar de amostras poliméricas e tecidos biológicos

Stori, Elis Moura January 2014 (has links)
As técnicas baseadas em microfeixe de íons energéticos possuem aplicações em diferentes áreas de conhecimento, tais como materiais, biologia, neurociência, ciências ambientais, entre outros. A microssonda iônica também possui a capacidade de fabricar micro-estruturas com aplicações em biomateriais, micro-fotônica, micro-fluídica, membranas porosas e diversas outras. O Laboratório de Implantação Iônica do Instituto de Física (LII) da UFRGS (Universidade Federal do Rio Grande do Sul) conta com uma linha de microssonda iônica que dispõe de detectores para a realização de diversos tipos de experimentos: Emissão de RaiosX Induzida por Partículas (Particle Induced X-Ray Emission – PIXE), Espectroscopia de Espalhamento de Rutherford (Rutherford Backskattering Spectroscopy – RBS), Reação Nuclear (Nuclear Reaction Analysis – NRA) e Microscopia Iônica de Varredura por Transmissão (Scanning Transmission Ion Microscopy – STIM). Além disso, tem-se aperfeiçoado a técnica de micro-fabricação denominada Litografia por Feixe de Prótons (Proton Beam Writing – PBW), atualmente em substratos poliméricos. Este trabalho apresenta dois focos: um deles é a análise de fígado de peixe pela técnica de micro-PIXE. Estes fígados apresentam lesões associadas à exposição de contaminantes. Essas lesões são acompanhadas de células pigmentosas à base de metais chamadas de centros de melanomacrófagos. Observou-se que o fígado de peixe é uma amostra em potencial para estudos ambientais. Outro foco foi o estudo da técnica de STIM em películas poliméricas micro-fabricadas por PBW. Foram estudadas diferentes configurações geométricas para a técnica de STIM, bem como a utilização de feixes de H+1, He+2 e Li+3. Diferentes amostras foram preparadas, desde estruturas simples (possuindo apenas orifícios) até amostras multi-estruturadas do tipo degrau. As medidas de STIM foram comparadas com medidas de Microscopia Eletrônica de Varredura (MEV) de maneira a confirmar a viabilidade e confiabilidade dos estudos morfológicos das amostras em questão. A técnica de STIM se apresentou viável para o estudo morfológico de microestruturas fabricadas por microfeixe de íons em películas poliméricas, sendo que a melhor configuração é na geometria on-axis utilizando o íon He+2 que provê melhor resolução em energia, sem comprometer a resolução espacial. Em comparação com medidas de MEV, apresenta vantagens como maior rapidez, preservação da amostra e o poder de resolver estruturas enterradas na amostra. A similaridade entre as duas técnicas com relação às demais características faz do STIM uma excelente alternativa à mais comumente utilizada para diversas análises morfológicas de películas poliméricas. / Ion beam techniques have many applications in different areas such as materials, biology, neuroscience and environmental science among others. The ion microprobe has also the ability of fabricating microstructures with applications in the fields of biomaterials, micro-photonics, micro-fluidics, porous membranes and many others. The Ion Implantation Laboratory of the Physics Institute at UFRGS has a microprobe beamline equiped with detectors used in different techniques: Particle Induced X-Ray Emission (PIXE), Rutherford Backscattering Spectroscopy (RBS), Nuclear Reaction Analysis (NRA) and Scanning Transmission Ion Microscopy (STIM). Besides, its scanning capability makes allows the use of the micro-fabrication technique called Proton Beam Writing (PBW). Currently, this technique has been used to write micro-structures over polymers. Several projects are in progress for the development and improvement of such techniques, since the microbeam line is a recent acquisition by the laboratory. This work presents two guidelines: one of them is the analysis of fish liver through the micro-PIXE technique. These livers present injuries associated to the exposure of contaminants. The injuries are characterized by the presence of pigmented cells based on metals called melanomacrophage centers. It was observed that the fish liver is a promising sample for environmental studies. The other guideline is the study of the STIM technique on micro-fabricated polymer foils by PBW. Different geometric configurations for the STIM technique were explored, as well as the use of different ion beams (H+1, He+2 and Li+3). Different samples were prepared, ranging from simple structures (containing only one hole) to step-like multi-structured samples. STIM measurements were compared with Scanning Electron Microscopy (SEM) in order to confirm the viability and reliability of morphological studies of the samples under study. The STIM technique proved to be suitable for the morphological study of micro-structures fabricated by ion microbeam on polymeric foils. The best configuration is the on-axis geometry using He+2 beam, which provides the best energy resolution without compromising the spatial resolution. In comparison with SEM measurements, advantages such as speed of measurement, non-destructiveness and power of resolving buried structures of the sample were observed. Concerning other features, the similarities between the two techniques make STIM an excellent alternative for morphological analysis of polymeric foils.
17

Utilização de técnicas de microfeixe de íons energéticos para caracterização morfológica e elementar de amostras poliméricas e tecidos biológicos

Stori, Elis Moura January 2014 (has links)
As técnicas baseadas em microfeixe de íons energéticos possuem aplicações em diferentes áreas de conhecimento, tais como materiais, biologia, neurociência, ciências ambientais, entre outros. A microssonda iônica também possui a capacidade de fabricar micro-estruturas com aplicações em biomateriais, micro-fotônica, micro-fluídica, membranas porosas e diversas outras. O Laboratório de Implantação Iônica do Instituto de Física (LII) da UFRGS (Universidade Federal do Rio Grande do Sul) conta com uma linha de microssonda iônica que dispõe de detectores para a realização de diversos tipos de experimentos: Emissão de RaiosX Induzida por Partículas (Particle Induced X-Ray Emission – PIXE), Espectroscopia de Espalhamento de Rutherford (Rutherford Backskattering Spectroscopy – RBS), Reação Nuclear (Nuclear Reaction Analysis – NRA) e Microscopia Iônica de Varredura por Transmissão (Scanning Transmission Ion Microscopy – STIM). Além disso, tem-se aperfeiçoado a técnica de micro-fabricação denominada Litografia por Feixe de Prótons (Proton Beam Writing – PBW), atualmente em substratos poliméricos. Este trabalho apresenta dois focos: um deles é a análise de fígado de peixe pela técnica de micro-PIXE. Estes fígados apresentam lesões associadas à exposição de contaminantes. Essas lesões são acompanhadas de células pigmentosas à base de metais chamadas de centros de melanomacrófagos. Observou-se que o fígado de peixe é uma amostra em potencial para estudos ambientais. Outro foco foi o estudo da técnica de STIM em películas poliméricas micro-fabricadas por PBW. Foram estudadas diferentes configurações geométricas para a técnica de STIM, bem como a utilização de feixes de H+1, He+2 e Li+3. Diferentes amostras foram preparadas, desde estruturas simples (possuindo apenas orifícios) até amostras multi-estruturadas do tipo degrau. As medidas de STIM foram comparadas com medidas de Microscopia Eletrônica de Varredura (MEV) de maneira a confirmar a viabilidade e confiabilidade dos estudos morfológicos das amostras em questão. A técnica de STIM se apresentou viável para o estudo morfológico de microestruturas fabricadas por microfeixe de íons em películas poliméricas, sendo que a melhor configuração é na geometria on-axis utilizando o íon He+2 que provê melhor resolução em energia, sem comprometer a resolução espacial. Em comparação com medidas de MEV, apresenta vantagens como maior rapidez, preservação da amostra e o poder de resolver estruturas enterradas na amostra. A similaridade entre as duas técnicas com relação às demais características faz do STIM uma excelente alternativa à mais comumente utilizada para diversas análises morfológicas de películas poliméricas. / Ion beam techniques have many applications in different areas such as materials, biology, neuroscience and environmental science among others. The ion microprobe has also the ability of fabricating microstructures with applications in the fields of biomaterials, micro-photonics, micro-fluidics, porous membranes and many others. The Ion Implantation Laboratory of the Physics Institute at UFRGS has a microprobe beamline equiped with detectors used in different techniques: Particle Induced X-Ray Emission (PIXE), Rutherford Backscattering Spectroscopy (RBS), Nuclear Reaction Analysis (NRA) and Scanning Transmission Ion Microscopy (STIM). Besides, its scanning capability makes allows the use of the micro-fabrication technique called Proton Beam Writing (PBW). Currently, this technique has been used to write micro-structures over polymers. Several projects are in progress for the development and improvement of such techniques, since the microbeam line is a recent acquisition by the laboratory. This work presents two guidelines: one of them is the analysis of fish liver through the micro-PIXE technique. These livers present injuries associated to the exposure of contaminants. The injuries are characterized by the presence of pigmented cells based on metals called melanomacrophage centers. It was observed that the fish liver is a promising sample for environmental studies. The other guideline is the study of the STIM technique on micro-fabricated polymer foils by PBW. Different geometric configurations for the STIM technique were explored, as well as the use of different ion beams (H+1, He+2 and Li+3). Different samples were prepared, ranging from simple structures (containing only one hole) to step-like multi-structured samples. STIM measurements were compared with Scanning Electron Microscopy (SEM) in order to confirm the viability and reliability of morphological studies of the samples under study. The STIM technique proved to be suitable for the morphological study of micro-structures fabricated by ion microbeam on polymeric foils. The best configuration is the on-axis geometry using He+2 beam, which provides the best energy resolution without compromising the spatial resolution. In comparison with SEM measurements, advantages such as speed of measurement, non-destructiveness and power of resolving buried structures of the sample were observed. Concerning other features, the similarities between the two techniques make STIM an excellent alternative for morphological analysis of polymeric foils.
18

Study of the nucleation mechanism of carbon nanotubes by field emission techniques / Etude du mécanisme de nucléation des nanotubes de carbone par techniques d'émission de champ

Moors, Matthieu 28 June 2010 (has links)
The present work is focused on the nucleation and growth mechanism of carbon nanotubes (CNT) that we have studied through different field emission techniques (FEM, FIM and atom-probe (PFDMS)). Reaction conditions associated with the CVD synthesis method were modeled inside the microscope aiming at studying nucleation phenomena at high resolution. The interaction between different metals (Fe, Co, Ni, conditioned as sharp tips) and gases (acetylene, ethylene and ethanol) was analyzed operando at high temperatures (500–900K), with the aim of reproducing growth conditions during the imaging process.<p>Ni was, in the end, the only metal studied, due to the poor quality of images acquired from Co and Fe. Aimed at reproducing the conditioning step of the catalyst often observed in CVD protocols, a first study showed that the crystal adopts a polyhedral morphology at the working temperature (873K) in an hydrogen atmosphere or under Ultra-High-Vacuum conditions, by the extension of dense crystal planes like {111} or {100}. The presence of hydrogen in the chamber does not seem to present any influence on the final crystal morphology at temperatures above 600K.<p>When exposed to a carbon-containing gas, nickel crystals present two distinct behaviors following the temperature region that is explored. At temperatures below ~623K, exposing Ni to ethylene or acetylene leads to the formation of a stable and poorly structured nickel carbide layer. The superficiality of this carbide is proven by the ease of its physical (by increasing the electrical field) or chemical (exposure to hydrogen or oxygen) evacuation. These three treatments initiate a clean-off phenomenon that evacuates the carbide layer. Reproducing these experiments in the atom-probe confirmed the carbidic nature of the surface as NiCy compounds were collected.<p>At temperatures above 623K, the carbide layer (formed by exposing Ni to the same gases) becomes unstable. Its formation is related to a transition period that precedes the nucleation of graphenes on the surface. The Ni crystal undergoes a massive morphological transformation when acetylene is introduced in the chamber at 873K. This phenomenon is induced by the presence of carbon on the surface which adsorbs so strongly on step sites that it provokes their creation. Carbon also induces a considerable enhancement of Ni atoms mobility that allows for this transition to occur. Once the new morphology is attained, nucleation of graphenes is observed to start on the extended and carbon-enriched step-containing crystal planes. By reproducing these experiments in the atom-probe, a high surface concentration of carbon dimers and trimers was observed. A kinetic study of their formation was thus achieved and showed that they were formed on the surface by the recombination of Cad. Their potential role as building-blocks of the CNT growth process (which had previously been proposed following theoretical considerations) is thus suggested on the basis of experimental results for the first time.<p>Two critical surface concentrations are highlighted in the present work. The first one is needed for the formation of carbon dimers and trimers and the second one has to be attained, during the morphological transformation, before the onset of graphene nucleation, probably providing a sufficient growth rate of the graphitic nuclei and allowing them to attain their critical size before their decomposition.<p>Finally, the observation of rotational circular patterns, most probably related to carbon nanotubes, suggests that CNT growth (and not only graphene nucleation) occurred episodically in our conditions, confirming the validity of our model.<p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
19

Towards saturation of detection efficiency in superconducting single-photon detectors at 4.2 K using local helium ion irradiation

Martinez, Glenn 25 September 2021 (has links)
Superconducting single-photon detectors (SSPDs) are the leading detectors in terms of high-speed single-photon counting and high detection efficiency (DE). One factor that limits the DE is the critical current Ic, which is the maximum current before the superconductor switches to the normal state. Increasing device’s bias current towards the Ic can improve the DE. However, the device’s Ic is reduced due to constriction and current crowding at the edges of the wire. Typically, this is caused by fabrication defects. Locally suppressing superconductivity at these defects can potentially lessen the occurrence of current crowding. In this thesis, we used the beam from the helium ion microscope (HIM) and measured the Ic to observe the effects of locally irradiating specific areas on a SSPD wire. Due to the HIM’s small spot size and high collimation, we can control the superconducting gap precisely at the center and edges of the wire. Suppressing the edges can potentially reduce current crowding and increase the device’s critical current while suppressing the center can improve detection sensitivity for photons incident at that location. Our results showed that the irradiated devices had reduced Ic compared to unirradiated devices for both cases. We then extend this method of local suppression of superconductivity to explore an alternative method of fabricating SSPDs by directly writing the device on the superconducting thin film. This can enable the fabrication of devices without the use of lithography resist. In our experiment, we fabricated a 3 μm wire using optical lithography that was disconnected at the center and connected it by writing a single 1 μm wire with the He+ ion beam. We measured the Ic for samples with and without the 1 μm wire pattern and observed that the Ic decreased as we increased the ion dose. Overall, this work aims to contribute to the continuing investigation of the detection mechanism for SSPDs and the improvement of nanofabrication methods using the HIM.
20

Réactions chimiques sur surfaces de platine et d'or à l'échelle atomique: approche théorique et expérimentale

Chau, Thoi-Dai 15 December 2004 (has links)
Dans ce travail nous avons étudié des réactions chimiques sur la surface de deux métaux :le platine et l'or, en utilisant la microscopie ionique à effet de champ électrique (FIM) et la spectrométrie de masse de désorption par champ pulsé (PFDMS). En complément de ces données expérimentales, nous apportons des résultats obtenus par la théorie de la fonctionnelle de la densité (DFT). La taille et la morphologie de nos échantillons font qu’ils sont de bons modèles de grains de phase active dans un catalyseur réel.<p>\ / Doctorat en sciences, Spécialisation chimie / info:eu-repo/semantics/nonPublished

Page generated in 0.1051 seconds