• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 26
  • 13
  • 6
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 151
  • 151
  • 53
  • 38
  • 36
  • 26
  • 25
  • 25
  • 25
  • 25
  • 22
  • 21
  • 20
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Relationship Between Pressure And Size Dependence Of Ionic Conductivity In Aqueous Solutions And Other Studies

Varanasi, Srinivasa Rao 12 1900 (has links) (PDF)
Diffusion is a fundamental process which plays a crucial role in many processes occurring in nature. It is governed by the Fickian laws of diffusion. The laws of diffusion explain how diffusive flux is related to the concentration gradient. However, diffusion occurs even when there is no concentration gradient. Chapter 1 introduces diffusion and related concepts such as random walk, Brownian motion, etc. Present understanding with relation to ionic conduction and diffusion in polar solvents and the anomalies observed in the variation of ionic conductivity with ionic radii has also been discussed. Walden’s rule states that the product of limiting ionic conductivity and viscosity is constant for a given ion in different solvents and it is inversely proportional to ionic radius in a given solvent. However, experimental observations indicate that in a given solvent limiting ionic conductivities show an increase followed by a decrease with increase in ionic radii. This is often referred to as the breakdown of Walden’s rule. Several theories have been proposed in the past to explain the breakdown in Waldens rule. Solvent-berg model, continuum based theories and microscopic theories are some of theories that have been proposed. These theories are discussed briefly. The limitations in these theories are also outlined. There are several computer simulation investigations of ions in water and these are discussed. Also described is diffusion of hydrocarbons in zeolites. Various interesting observations such as window effect, nest effect, single file diffusion and the levitation effect are discussed. In Chapter 2, we have analysed the experimental ionic conductivity data as a function of the ionic radius for monovalent cations and anions in aqueous solution. Molecular dynamics simulations on LiCl and CsCl dissolved in water are also reported. The results suggest that the activation energy is responsible for the anomalous dependence of ionic conductivity on ionic radii. It is seen that ions with high conductivity posses low activation energy. The reason for the variation of activation energy with ionic radii are explained in terms of Derouane’s mutual cancellation of forces or levitation effect. This provides an alternative to the existing theories. Experimental limiting ionic conductivity, λ0 of different alkali ions in water shows markedly different dependences on pressure. Existing theories such as that of Hubbard-Onsager are unable to explain this dependence on pressure of the ionic conductivity for all ions. Experimental ionic conductivity data shows that smaller ions such as Li+ exhibit a monotonic increase in λ0 with pressure. Intermediate sized ions such as K+ exhibit an increase in λ0 followed by a decrease at still higher pressures. Larger ions such as Cs+ exhibit a monotonic decrease in λ0 with increase in pressure. In the present thesis, we have explored this intriguing behaviour shown by alkali ions in water in the next few chapters. In Chapter 3, we report molecular dynamics investigation of potassium chloride solution (KCl) at low dilution in water at several pressures between 1 bar and 2 kbar. Two different potential models have been employed. One of the models successfully reproduces the experimentally observed trend in ionic conductivity of K+ ion in water over 0.001-2 kbar range at 298K. We also propose a theoretical explanation, albeit at a qualitative level, to account for the dependence of ionic conductivity on pressure in terms of the previously studied Levitation Effect. A number of properties of the solvent in the hydration shell are also reported. In Chapter 4, residence times of water in the solute and water hydration shell are reported for KCl in water as a function of pressure. Two different approaches – Impey, McDonald and Madden’s approach as well as the recently proposed stable state picture (SSP) of Laage and Hynes yield somewhat different values for the residence times. The latter suggests that the hydration shell is more labile. As pressure is varied, the analysis suggests drastic changes in the hydration shell around water and little or no change in the hydration shell of the ions at higher pressures. The residence times τIMM as well as τSSP show a decrease with increase in pressure upto 1.5 kbar and a small increase beyond this pressure. This correlates with the dependence of the ionic conductivity of potassium ion on pressure. Similar correlation is also seen for chloride ion between ionic conductivity and residence time in hydration shell. However, no such correlation is seen in the case of water. We also report variation of residence time as a function of t∗, the minimum time that a water has to leave the hydration shell to be excluded from it. In Chapter 5, a molecular dynamics study of LiCl dissolved in water is reported at several pressures between 1 bar and 4 kbars at 240K. Structural properties such as radial distribution function, distribution of the angle between ion-oxygen and dipole vector of water in the hydration shell, angle between ion-oxygen and OH vector, oxygen-ion oxygen angle for water in the hydration shell, mean residence times by two different approaches are reported. Self-diffusivity of both Li+ and Cl− exhibit an increase with pressure in agreement with the experimentally observed trend. We also report the velocity autocorrelation function as a function of pressure. We show that the changes in these can be understood in terms of the levitation effect. For the first time we report the self part of the intermediate scattering function, Fs(k, t), at different pressures. These show for Li+ at small wavenumber k, a bi-exponential decay with time at low pressures. At higher pressures when the ionic conductivity is high, Fs(k, t) exhibits a single exponential decay. We also report wavenumber dependence of the ratio of the full width at half maximum to 2Dk2. These changes in these properties can be accounted for in terms of the levitation effect. The changes in the void structure of water with pressure plays a crucial role in the changes in ionic conductivity of both the ions. In Chapter 6, a detailed molecular dynamics study of self-diffusivity of model ions in water is presented as a function of pressure. First, we have obtained the dependence of self-diffusivity on ionic radius for both cations and anions by varying the radius of the ion, rion. Self-diffusivity exhibits an increase with ionic radius when rion is small and reaches a maximum at some intermediate value, before decreasing with increase in rion for rion > . The velocity autocorrelation function for different sizes of cations as well as anions suggest that the ion with maximum self-diffusivity has facile motion with little back scattering. These trends can be understood in terms of the levitation effect which relates the dependence of self-diffusivity on ionic radius to the bottleneck radius of the pore network provided by the solvent or water. The ratio ζ, defined as the full width at half maximum of the self part of the dynamic structure factor at wavenumber k to its value (2Dk2) at k = 0 is seen to increase with k for ions far away from the diffusivity maximum while a decrease with k is observed for ions closer to the diffusivity maximum. Calculations have also been carried out at pressures of 0.001, 2 and 4 kbars to obtain the variation of ionic conductivity with pressure for model ions of several different sizes. It is shown that for small ions (rion < ), self-diffusivity increases with pressure or exhibits an increase followed by a decrease. In contrast, we show that whenever ionic radius is large, (rion > ), a decrease in self-diffusivity with increase in pressure is seen. We suggest that there is a relation between the dependence of self-diffusivity on ionic radius and its dependence on pressure. The nature of this relationship arises through the levitation effect. Increase in pressure leads to decrease in the bottleneck radius, thus increasing the levitation parameter. For small ions (rion < ), this will lead to increase in diffusivity whereas for large ions (rion > ) this will lead to decrease in diffusivity. For small ions (rion < ), the increase in pressure leads to lowered back scattering in the velocity autocorrelation function. In contrast to this, for large ions (rion ≥ ), any increase in pressure leads to increase in back scattering in the velocity autocorrelation function. For the 1.7 °A anion, the ratio ζ is seen to exhibit a minimum at intermediate k and increase with k at large k for 0.001 kbar pressure. This changes to a less pronounced minimum at 2 kbars and by 4 kbars to a nearly monotonically decreasing function of k. These changes suggest, in agreement with the predictions of the levitation effect, the approach of the bottleneck radius to values similar to that of the ionic radius of 1.7 °A on increasing pressure to 4 kbars. Thus, this work offers an unification in our understanding of the dependence of ionic conductivity on ionic radius and pressure. It is seen that when the ionic radius is varied the numerator of the expression for levitation parameter is varied whereas by varying the pressure, the denominator is varied. The variation of diffusivity with density of the host medium and degree of disorder of the host medium is explored in Chapter 7. The system consists of a binary mixture of a relatively smaller sized solute (whose size is varied) and a larger sized solvent interacting via Lennard-Jones potential. Calculations have been performed at three different reduced densities of 0.7, 0.8 and 0.933. These simulations show that diffusivity exhibits a maximum for some intermediate size of the solute when the solute diameter is varied. The maximum is found at the same size of the solute at all densities which is at variance with the prediction of the levitation effect. In order to understand this anomaly, we have carried out additional simulations in which we have varied the degree of disorder at constant density and find that the diffusivity maximum gradually disappears with increase in disorder. We have also carried out simulations in which we have kept the degree of disorder constant but changed only the density. We find that the maximum in diffusivity is now seen to shift to larger distances with decrease in density. In these simulations we have characterized the disorder by constructing the minimal spanning tree. These results are in excellent agreement with the predictions of the levitation effect. They suggest that the effect of disorder is to shift the maximum in diffusivity towards smaller solute radius while that of the decrease in density is to shift it towards larger solute radius. Thus, in real systems where the degree of disorder is lower at higher density and vice versa, the effect due to density and disorder have opposing influences. These are confirmed by the changes seen in the velocity autocorrelation function, self part of the intermediate scattering function and activation energy. In Chapter 8 we report a molecular dynamics study of the dependence of diffusivity of the cation on cation radii in molten superionic salt containing iodine ion. In this study, we have employed modified Parinello-Rahman-Vashistha interionic pair potential proposed by Shimojo et al (F. Shimojo and M. Kobayashi, J. Phys. Soc. Jpn 60, 3725 (1991)). Our results suggest that the diffusivity of the cation exhibits an increase followed by a decrease as the ionic radius is increased. Several other properties like velocity auto correlation function, intermediate scattering function, activation energy are reported. The next two chapters deal with diffusion of hydrocarbon isomers containing aromatic moiety. Chapter 9 reports structure, energetics and dynamic properties of the three isomers of trimethyl benzene in β-zeolite. Monte Carlo and molecular dynamics simulations have been performed at 300K. Of the three isomers, it is observed that 1,2,4-trimethyl benzene(124 TMB) shows fast dynamics inside the channels of β-zeolite. It is seen that both translational and rotational diffusivities are in the order D (124 TMB) > D (123 TMB) > D (135 TMB). 124 TMB seems to perform jumps between perpendicular channels more frequently whereas 123 and 135 isomers experience more hindrance to these jumps. It is also shown that there is a lower energetic barrier for 124 TMB across the window that separates two perpendicular channels in β-zeolite. Reorientational correlation functions suggest that reorientation of C6 axis (axis perpendicular to the plane of the phenyl ring) is highly restricted in case of 135 TMB. Reorientation of C2 axis (axis on the plane of the phenyl ring) seems to be more facile than that of C6 axis in case of both 123 TMB and 135 TMB. And interestingly, C6 and C2 axis reorientations are equally facile in case of 124 TMB. Chapter 10 presents molecular dynamics simulation results carried out on an equimolar binary mixture of cumene (isopropyl benzene) and pseudo-cumene (1,2,4-trimethyl benzene) in zeolite-NaY at four different temperatures. We compare different structural, energetic and dynamic properties of cumene and pseudo-cumene in zeolite-NaY. Our results suggest that both translational and rotational diffusivities are higher for cumene as compared to pseudo-cumene. Potential energy landscapes show that there is an energetic barrier for diffusion past the 12 MR window plane that separates two neighboring super cages. Such an energetic barrier is large for pseudo-cumene (3 kJ/mol) as compared to that of cumene (1.5 kJ/mol). Activation energies corresponding to both translational and rotational diffusion suggest that pseudo-cumene encounters larger energetic barriers for both translation and rotation as compared to cumene. Reorientational correlation functions suggest that reorientation of C2 axis is more facile than that of C6 axis in case of both cumene and pseudo-cumene. Activation energies corresponding to reorientational relaxations suggest that C6 axis encounters larger energetic barriers as compared to C2 axis in case of both cumene and pseudo-cumene. Chapter 11 discusses the main conclusions of the thesis and directions for future work.
22

Studying the conduction mechanism of stabilised zirconias by means of molecular dynamics simulations

Marrocchelli, Dario January 2010 (has links)
Stabilised zirconias have a remarkable variety of technological and commercial applications, e.g., thermal barrier coatings, gas sensors, solid oxide fuel cells, ceramic knives and even fashion jewelry. This amazing versatility seems to originate from the creation of atomic defects (oxide ion vacancies) in the zirconia crystal. Indeed, these vacancies, and their interactions with other vacancies or cations, dramatically affect the structural, thermal, mechanical and electrical properties of zirconia. This thesis is concerned with the study of the role of the vacancy interactions on the conducting properties of these materials. This study was performed by using realistic, first-principles based molecular dynamics simulations. The first system studied in this thesis is Zr0:5 0:5xY0:5+0:25xNb0:25xO7. This has a fixed number of vacancies across the series but its conductivity changes by almost two orders of magnitude as a function of x. For this reason, Zr0:5 0:5xY0:5+0:25xNb0:25xO7 represents an ideal test-bed for the role of the cation species on the defect interactions and therefore on the ionic conductivity of these materials. Realistic inter-atomic potentials for Zr0:5 0:5xY0:5+0:25xNb0:25xO7 were developed on a purely first-principles basis. The observed trends of decreasing conductivity and increasing disorder with increasing Nb5+ content were successfully reproduced. These trends were traced to the influences of the cation charges and relative sizes and their effect on vacancy ordering by carrying out additional calculations in which, for instance, the charges of the cations were equalised. The effects of cation ordering were considered as well and their influence on the conductivity understood. The second part of this thesis deals with Sc2O3–doped (ScSZ) and Y2O3–doped (YSZ) zirconias. These systems are of great academic and technological interest as they find use in solid oxide fuel cells. Inter-atomic potentials were parametrised and used to predict the structural and conducting properties of these materials, which were found to agree very well with the experimental evidence. The simulations were then used to study the role of the vacancy interactions on the conducting properties of these materials. Two factors were found to influence the ionic conductivity in these materials: cation-vacancy and vacancy-vacancy interactions. The former is responsible for the difference in conductivity observed between YSZ and ScSZ. Vacancies, in fact, prefer to bind to the smaller Zr4+ ions in YSZ whereas there is not a strong preference in the case of ScSZ, since the cations have similar sizes in this case. This effect is observed at temperatures as high as T = 1500 K. Finally, it was found that vacancies tend to order so that they can minimise their mutual interaction and that this ordering tendency is what ultimately is responsible for the observed anomalous decrease of the ionic conductivity with increasing dopant concentration. The consequences of such a behaviour are discussed.
23

Síntese e estudo de membranas condutoras iônicas a base de DNA-CTMA e DNA-DODA para aplicação em células solares / Synthesis and study of ionic conductive membranes based on DNA-CTMA and DNA-DODA for application in solar cells

Jimenez, David Esteban Quintero 07 June 2013 (has links)
Este trabalho apresenta os resultados da preparação e caracterização de eletrólitos poliméricos a partir de DNA-CTMA e DNA-DODA com adição de 7, 9, 10 e 11% (m/m) de LiClO4 e/ou LiI/I2. O objetivo é usar estes eletrólitos poliméricos em pequenas células solares sensibilizadas com corante (DSSC). O DNA com a massa molecular de 5,41x108 &plusmn; 1179,6 g/mol foi usado para a síntese de complexos de DNA-CTMA e DNA-DODA através da reação de substituição de DNA com os agentes surfactantes: CTMA e DODA. As amostras na forma de filmes foram caracterizadas por espectroscopia de impedância, difração de raios-X, UV-Vis, FT-IR e análises térmicas (DSC e TGA). Os espectros de FT-IR confirmaram a obtenção dos complexos de DNA-CTMA e DNA-DODA. A espectroscopia no UV/Vis revelou a presença de absorção em 260 nm atribuída às transições eletrônicas &pi;- &pi;* das bases nitrogenadas do DNA. As análises térmicas dos complexos de DNA-CTMA e DNA-DODA mostraram a estabilidade térmica de 226&deg;C e 232&deg;C e a transição vítrea de -67&deg;C e -40,0&deg;C, respectivamente. A difração de raios-X das amostras permitiu a determinação da porcentagem de cristalinidade sendo entre 43,74 e 63,20% para DNA-CTMA e entre 49,4 e 76,25% para DNA-DODA. Os filmes foram submetidos às medidas de condutividade iônica revelando os melhores resultados de 8,21x10-4 S/cm a 25&deg;C para as amostras de DNA-CTMA com 10% (m/m) de LiClO4 e 2,87x10-4 S/cm para o DNA-DODA com 10% (m/m) de LiClO4. Os eletrólitos de DNA-CTMA com 9 e 10 % (m/m) de LiI/I2 e DNA-DODA com 9 e 10% (m/m) de LiI/I2 foram aplicados em pequenas células solares mostrando a eficiência de 0,14, 0,31, 0,177 e 0,66% respectivamente, valores considerados promissores para futuros estudos. / The present work describes the preparation and characterization of polymeric electrolytes of DNA-CTMA and DNA-DODA with addition of 7, 9, 10 and 11% (m/m) LiClO4 and/or LiI/I2. The objective is use of these polymer electrolytes in dye sensitized solar cells (DSSC). The DNA with molecular weight of 5,41x108 &plusmn; 1179,6 g/mol was used to synthesize DNA-CTMA and DNA-DODA complexes by substitution reaction. The obtained samples in the film form were then characterized by impedance spectroscopy, X-ray diffraction, UV-Vis, FT-IR and thermal analyses (DSC and TGA). The FT-IR spectra confirmed both, DNA-CTMA and DNA-DODA complexes obtaining. The UV-Vis spectroscopy of the samples evidenced an absorption band at 260 nm attributed to electronic transitions &pi;-&pi; * of DNA nitrogenous bases. The TGA and DSC analyses shoved a thermal stability of the DNA-CTMA and DNA-DODA samples of 226&deg;C and 232&deg;C and, glass transition of -67&deg;C and -40&deg;C, respectively. The X-ray diffraction allowed determining the crystallinity of 43.74 to 63.20% for the samples of DNA-CTMA and 49.4 to 76.25% for the DNA-DODA. The films were subjected to ionic conductivity measurements showing the best results of 8.21x10-4 S/cm at 25&deg;C for the DNA-CTMA with 10% (w/w) of LiClO4 and of 2.87x10-4 S/cm for DNA-DODA with 10% (w/w) of LiClO4. Finally the electrolytes of DNA-CTMA with 9 and 10% (m/m) of LiI/I2 and of DNA-DODA 9 and 10% (m/m) of LiI/I2 were applied in small solar cells exhibiting the efficiency of 0,14, 0,31, 0,177 and 0,66%, respectively. The obtained results are promising for future investigations.
24

Condutividade elétrica de vidros de boratos, silicatos e sílico-sulfatos de íons alcalinos. / Electrical conductivity of borate, silicate and silica-sulphate glasses of alkaline ions.

Nascimento, Marcio Luis Ferreira 20 July 2000 (has links)
Vidros condutores à base de boratos, silicatos e sílico-sulfatos de íons de metais alcalinos foram preparados a partir da mistura apropriada de pós de óxidos, carbonatos e sulfatos, Eles foram produzidos a partir da fusão e resfriamento rápido em um forno de carbeto de silício de ate 1400&ordm;C. Estes materiais foram analisados pelas técnicas de condutividade em corrente contínua (CC) e por Espectroscopia de Impedância (EI) nas caracterizações elétricas, por Difração de Raios X (DRX) para análise estrutural, Absorção Ótica (AO) par verificar a transmitância e pelas técnicas de Espectroscopia de Emissão de Chama (EEC) e Retroespalhamento de Rutherford (RBS) para identificar as composições. Os difratogramas de Raios X mostraram que se tratam de sólidos amorfos. Os espectros de AO mostraram forte absorção na região do ultravioleta e completa transparência para a luz visível. As técnicas de EEC e RBS indicaram perdas pequenas de óxidos de sódio e lítio porem grandes de sulfatos. Os principais resultados mostraram: a maior condutividade entre os materiais estudados, de 2,3&times;10-4S/cm para o vidro 53,4Na2O&middot;6,6Na2SO4&middot;40,0SiO2 mol%, caracterizando-o como um condutor iônico rápido (FIC-Fast Ion Conductor); concordância nos valores de condutividade em CC e CA, e uma melhor caracterização das propriedades dielétricas, como capacitância C, freqüência de relaxação f0 e ângulo de descentralização Fi. Alem do comportamento do tipo Arrhenius em todas as amostras foi identificada também uma não-homogeneidade estrutural através de um segundo semicírculo por EI. Por fim, aplicando tensões de até 1kV foram verificados o implante de prata em dois vidros através da técnica de RBS. / Conducting glasses based on borates, silicates and silica-sulfates of alkali metals have been prepared from an appropriate mixture of powder of oxides, carbonates and sulfates. They were produced by fusion in a silicon carbide furnace up to 1400&ordm;C and then by fast cooling. These materials have been analyzed with techniques of DC conductivity and Impedance Spectroscopy (IS) for electrical characterizations, by X Ray Diffraction (XRD) for structural analysis, Optical Absorption (OA) to verify the transmittance characteristics and by techniques of Flame Emission Spectroscopy (FES) and Rutherford Backscattering (RBS) to identify their compositions. The X Rays difractrograms have shown that they are amorphous solids. The AO spectra showed strong absorption in UV region and a full transparency for visible light. The FES and RBS techniques indicated little loss of sodium and lithium oxides, however greater loss of sulfates. The main results shown that: among all the samples the largest conductivity, of 2.3&times;10-4S/cm at 150&ordm;C was found for the glass 53.4Na2O&middot;6.6Na2SO4&middot;40.0SiO2 mol%, characteristic of a FIC (FIC-Fast Ion Conductor) system; also a concordance of DC and AC conductivity values, and a better characterization of dielectrical properties, such as capacitance C, relaxation frequency f0 and depression angle Fi. Besides the Arrhenius in all the samples a structural non-homogeneity was found in a second semicircle by IS. Lastly a successful Ag implant on two glasses was certified by the RBS technique, by application of voltages up to 1kV.
25

Condutividade elétrica de vidros de boratos, silicatos e sílico-sulfatos de íons alcalinos. / Electrical conductivity of borate, silicate and silica-sulphate glasses of alkaline ions.

Marcio Luis Ferreira Nascimento 20 July 2000 (has links)
Vidros condutores à base de boratos, silicatos e sílico-sulfatos de íons de metais alcalinos foram preparados a partir da mistura apropriada de pós de óxidos, carbonatos e sulfatos, Eles foram produzidos a partir da fusão e resfriamento rápido em um forno de carbeto de silício de ate 1400&ordm;C. Estes materiais foram analisados pelas técnicas de condutividade em corrente contínua (CC) e por Espectroscopia de Impedância (EI) nas caracterizações elétricas, por Difração de Raios X (DRX) para análise estrutural, Absorção Ótica (AO) par verificar a transmitância e pelas técnicas de Espectroscopia de Emissão de Chama (EEC) e Retroespalhamento de Rutherford (RBS) para identificar as composições. Os difratogramas de Raios X mostraram que se tratam de sólidos amorfos. Os espectros de AO mostraram forte absorção na região do ultravioleta e completa transparência para a luz visível. As técnicas de EEC e RBS indicaram perdas pequenas de óxidos de sódio e lítio porem grandes de sulfatos. Os principais resultados mostraram: a maior condutividade entre os materiais estudados, de 2,3&times;10-4S/cm para o vidro 53,4Na2O&middot;6,6Na2SO4&middot;40,0SiO2 mol%, caracterizando-o como um condutor iônico rápido (FIC-Fast Ion Conductor); concordância nos valores de condutividade em CC e CA, e uma melhor caracterização das propriedades dielétricas, como capacitância C, freqüência de relaxação f0 e ângulo de descentralização Fi. Alem do comportamento do tipo Arrhenius em todas as amostras foi identificada também uma não-homogeneidade estrutural através de um segundo semicírculo por EI. Por fim, aplicando tensões de até 1kV foram verificados o implante de prata em dois vidros através da técnica de RBS. / Conducting glasses based on borates, silicates and silica-sulfates of alkali metals have been prepared from an appropriate mixture of powder of oxides, carbonates and sulfates. They were produced by fusion in a silicon carbide furnace up to 1400&ordm;C and then by fast cooling. These materials have been analyzed with techniques of DC conductivity and Impedance Spectroscopy (IS) for electrical characterizations, by X Ray Diffraction (XRD) for structural analysis, Optical Absorption (OA) to verify the transmittance characteristics and by techniques of Flame Emission Spectroscopy (FES) and Rutherford Backscattering (RBS) to identify their compositions. The X Rays difractrograms have shown that they are amorphous solids. The AO spectra showed strong absorption in UV region and a full transparency for visible light. The FES and RBS techniques indicated little loss of sodium and lithium oxides, however greater loss of sulfates. The main results shown that: among all the samples the largest conductivity, of 2.3&times;10-4S/cm at 150&ordm;C was found for the glass 53.4Na2O&middot;6.6Na2SO4&middot;40.0SiO2 mol%, characteristic of a FIC (FIC-Fast Ion Conductor) system; also a concordance of DC and AC conductivity values, and a better characterization of dielectrical properties, such as capacitance C, relaxation frequency f0 and depression angle Fi. Besides the Arrhenius in all the samples a structural non-homogeneity was found in a second semicircle by IS. Lastly a successful Ag implant on two glasses was certified by the RBS technique, by application of voltages up to 1kV.
26

Endurance Materials for Hydrogen Sulfide Splitting in Electrolytic Cell

Mbah, Jonathan Chinwendu 05 November 2008 (has links)
This study describes the development of a novel thin membrane exchange assembly (MEA) from a solid acid material, cesium hydrogen sulfate (CsHSO4), and from a composite anode electrocatalyst for electrolytic splitting of (100 %) H2S feed content gas operating at 135 kPa and 150 °C. A new class of anode electrocatalyst with the general composition, RuO2/CoS2, and an improved proton conductor, CsHSO4, have shown great stability and desired properties at typical operating conditions. This configuration demonstrated stable electrochemical operation for 24 h with a (100 %) H2S fuel stream at 423 K. This same system showed a maximum current density of (19 mA/cm²) at 900 mV. The performance of this new anode electrocatalyst when compared to that of Pt black investigated in a previous study showed an overall superiority in application. We have achieved a 30 % reduction in the overall system performance by fabricating a thin (200 µm) CsHSO4 electrolyte, which reduced the whole MEA thickness from 2.3 mm to 500 µm. The result of permeability measurements proved that this thin solid electrolyte is impermeable to H2S gas and physical integrity was preserved throughout the experimental period. Further resistance losses were compensated by using a high energy planetary milling system to enhance the ionic conductivity of CsHSO4. The difference in stability and electrochemical performance of these cells compared to that of Pt anode based systems is directly attributable to the anode materials developed in this project. Factorial experiments were used to characterize the effect of controllable process variables (electrolyte thickness, time, age of the electrolyte) on the cell current density and interfacial polarization resistances. As expected, cell current density and interfacial polarization resistances were a function of electrolyte thickness and age. Nevertheless, the effect of electrolyte thickness has a more prominent effect on the measured parameters. In addition, these experiments were used to identify regions of optimum system performance. Tafel plots were constructed to investigate the kinetic behavior of various anode based electrocatalysts. Exchange current densities, which are directly a measure of the electrochemical reaction, increased with RuO2/CoS2-based anodes. These experiments also suggested that high levels of feed utilization were possible using these materials. This was an impressive result considering the drastic improvement in electrochemical performance, current density, and sulfur tolerance compared to the other anode configurations.
27

Performance of an Intermediate-Temperature Fuel Cell Using a Proton-Conducting Sn0.9In0.1P2O7 Electrolyte

Sano, Mitsuru, Hibino, Takashi, Nagao, Masahiro, Shibata, Hidetaka, Heo, Pilwon January 2006 (has links)
No description available.
28

Bi-Based Oxide Anodes for Direct Hydrocarbon SOFCs at Intermediate Temperatures

Sano, Mitsuru, Harada, Ushio, Hibino, Takashi, Hashimoto, Atsuko, Hirabayashi, Daisuke January 2004 (has links)
No description available.
29

Design of a Reduction-Resistant Ce0.8Sm0.2 O 1.9 Electrolyte Through Growth of a Thin BaCe1−xSmxO3−α Layer over Electrolyte Surface

Sano, Mitsuru, Nagao, Masahiro, Hibino, Takashi, Tomita, Atsuko, Hirabayashi, Daisuke January 2004 (has links)
No description available.
30

Intermediate-Temperature NOx Sensor Based on an In^3+ -Doped SnP2O7 Proton Conductor

Tomita, Atsuko, Sano, Mitsuru, Hibino, Takashi, Namekata, Yousuke, Nagao, Masahiro January 2006 (has links)
No description available.

Page generated in 0.0805 seconds