• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 227
  • 30
  • 19
  • 8
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 327
  • 327
  • 302
  • 61
  • 27
  • 26
  • 23
  • 23
  • 23
  • 23
  • 23
  • 20
  • 19
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

THE PROPAGATION OF EMP IN A PLASMA-FILLED WAVEGUIDE.

Righettini, Marlene Elaine. January 1983 (has links)
No description available.
242

Surface bioactivity enhancement of polyetheretherketone (PEEK) by plasma immersion ion implantation

Lui, So-ching., 雷素青. January 2009 (has links)
published_or_final_version / Orthopaedics and Traumatology / Master / Master of Philosophy
243

Improved magnetic feedback system on the fast rotating kink mode

Peng, Qian January 2016 (has links)
This thesis presents an improved feedback system on HBT-EP and suppression of the fast rotating kink mode using this system. HBT-EP is an experimental tokamak at Columbia University designed to study the magnetohydrodynamic (MHD) instabilities in confined fusion. The most damaging instabilities are global long wavelength kink modes, which break the toroidal symmetry of the magnetic structure and lead to plasma disruption and termination. When a tokamak is surrounded by a close fitting conducting wall, then the single helicity linear dispersion relation of the kink instability has two ominating branches: one is the "slow mode", rotating at the time scale of wall time, known as resistive wall mode (RWM), the other is the fast mode, that becomes unstable near the ideal wall stability limit. Both instabilities are required to be controlled by the feedback system in HBT-EP. In this thesis, improvements have been made upon the previous GPU-based system to enhance the feedback performance and obtain clear evidence of the feedback suppression effect. Specifically, a new algorithm is implemented that maintains an accurate phase shift between the applied perturbation and the unstable mode. This prevents the excitation of the slow kink mode observed in previous studies and results in high gain suppression for fast mode control at all frequency for the first time. When the system is turned off, suppression is lost and the fast mode is observed to grow back. The feedback performance is tested with several wall configurations including the presence of ferritic material. This provides the first comparison of feedback control between the ferritic and stainless wall. The effect of plasma rotation on feedback control is tested by applying a static voltage on a bias probe. As the mode rotation being slowed by the radial current flow, a higher gain on the kink mode is required to achieve feedback suppression. The change in plasma rotation also modifies the plasma response to the external perturbation. The optimal phase shift for suppression changes with the modified response and these observations are consistent with the predictions of the single helicity model.
244

Study of warm dense matter and high energy density physics. / 溫暖稠密物質及高能量密度物理的研究 / Study of warm dense matter and high energy density physics. / Wen nuan chou mi wu zhi ji gao neng liang mi du wu li de yan jiu

January 2009 (has links)
Ng, Siu Fai = 溫暖稠密物質及高能量密度物理的研究 / 吳肇輝. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 126-133). / Abstracts also in Chinese. / Ng, Siu Fai = Wen nuan chou mi wu zhi ji gao neng liang mi du wu li de yan jiu / Wu Zhaohui. / Chapter 1 --- Introduction --- p.16 / Chapter 1.1 --- General review of high energy density physics --- p.16 / Chapter 1.2 --- General review of warm dense matter --- p.20 / Chapter 1.2.1 --- Physics of warm dense matter --- p.20 / Chapter 1.2.2 --- Uncertainties of warm dense matter --- p.23 / Chapter 1.2.3 --- Challenges of warm dense matter studies --- p.25 / Chapter 1.3 --- Use of intense heavy ion beam --- p.27 / Chapter 1.4 --- Motivation and structure of this thesis --- p.32 / Chapter 2 --- Hydrodynamic simulations --- p.34 / Chapter 2.1 --- Lagrangian hydrodynamic code --- p.34 / Chapter 2.2 --- Hydrodynamic equations --- p.35 / Chapter 2.3 --- Artificial viscosity --- p.36 / Chapter 3 --- Equations of state --- p.38 / Chapter 3.1 --- Van der Waals' equation of state --- p.39 / Chapter 3.2 --- Quotidian equation of state --- p.41 / Chapter 3.3 --- Saha-based equation of state --- p.41 / Chapter 3.4 --- Inverse power potentials equation of state --- p.48 / Chapter 3.5 --- Gruneisen-type equation of state --- p.53 / Chapter 3.6 --- Discussion --- p.59 / Chapter 4 --- Single bubble sonoluminescence --- p.63 / Chapter 4.1 --- Introduction --- p.63 / Chapter 4.2 --- Theory of sonoluminescence --- p.65 / Chapter 4.2.1 --- Bubble wall dynamics --- p.66 / Chapter 4.2.2 --- Radiation transport --- p.67 / Chapter 4.2.3 --- Diffusive stability --- p.68 / Chapter 4.3 --- Numerical simulation --- p.68 / Chapter 4.3.1 --- Determination of the ambient radius --- p.69 / Chapter 4.3.2 --- Simulations using SEOS --- p.70 / Chapter 4.3.3 --- Simulations using QEOS --- p.77 / Chapter 4.4 --- Conclusion --- p.82 / Chapter 5 --- Collapsing bubble in ion-beam-heated metal --- p.83 / Chapter 5.1 --- Introduction --- p.83 / Chapter 5.2 --- Bubble collapse --- p.86 / Chapter 5.2.1 --- First step of collapse --- p.88 / Chapter 5.2.2 --- Stagnation point and bubble size --- p.89 / Chapter 5.2.3 --- Outer boundary and metal thickness --- p.91 / Chapter 5.2.4 --- Metal layer just outside bubble --- p.93 / Chapter 5.3 --- Effect of equation of state used --- p.95 / Chapter 5.3.1 --- Inverse power potentials equation of state --- p.95 / Chapter 5.3.2 --- Effect of ionization --- p.97 / Chapter 5.3.3 --- Effect of hard core --- p.97 / Chapter 5.3.4 --- Effect of EOS for metal --- p.97 / Chapter 5.4 --- Effect of proposed experimental parameters --- p.102 / Chapter 5.4.1 --- Initial gas density --- p.102 / Chapter 5.4.2 --- Energy deposition rate --- p.102 / Chapter 5.5 --- Conclusion and discussion --- p.105 / Chapter 6 --- High coupling efficiency compression by intense ion beams --- p.108 / Chapter 6.1 --- Introduction --- p.108 / Chapter 6.2 --- Ion stopping formulation --- p.111 / Chapter 6.3 --- Numerical simulation --- p.112 / Chapter 6.3.1 --- Lithium hydride target --- p.112 / Chapter 6.3.2 --- Underdense aluminum foam --- p.118 / Chapter 6.4 --- Conclusion --- p.119 / Chapter 7 --- Conclusion --- p.121 / Chapter 7.1 --- Summary --- p.121 / Chapter 7.2 --- Suggestions for future work --- p.123 / Bibliography --- p.126
245

Influência do tratamento físico da fibra de coco nas propriedades mecânicas do biocompósito com matriz de poliéster insaturada /

Oliveira, Daniel Magalhães de. January 2018 (has links)
Orientador: Herman Jacobus Cornelis Voorwald / Coorientadora: Kelly Cristina Coelho de Carvalho Benini / Banca: Marcos Yutaka Shiino / Banca: Daniela Rgina Mulinari / Resumo: Maior conscientização em relação as questões ambientais, atrelada a escassez de recursos, problemas ambientais globais e a políticas ambientais cada vez mais fortes influenciaram indústrias e pesquisadores a apreciar, estudar e desenvolver novos materiais a partir de fontes renováveis e novas tecnologias de fabricação. Entretanto, na literatura é reportado que a adesão interfacial entre fibras naturais e matriz polimérica é um fator que afeta as propriedades mecânicas do biocompósito, podendo ser melhorada por diversos tipos de tratamentos superficiais. Assim sendo, mantas de fibra de coco foram tratadas superficialmente por jato de plasma atmosférico, considerado menos agressivo ao meio ambiente quando comparado a tratamentos químicos, com o intuito de melhorar a adesão interfacial do biocompósitos. As fibras de coco foram caracterizadas com o objetivo de verificar a influência do tratamento nas propriedades físicas, químicas e térmicas. Verificou-se que o tratamento modificou a superfície das fibras e, consequentemente, sua hidrofilicidade e energia superficial, diminuindo o valor da permeabilidade. Parâmetros de processamento e o ciclo de cura mais adequado foram determinados como 80 ºC por 210 min, 135 ºC por 180 min e 160 ºC por 120 min, sem a aplicação de vácuo durante o processo e com fração volumétrica de fibras de aproximadamente 40 %. Inspeção acústica por ultrassom permitiu avaliar o processamento das placas dos biocompósitos verificando possíveis imperfeições caus... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Greater awareness regarding environmental issues, coupled with scarcity of resources, global environmental problems, and increasingly strong environmental policies have influenced industries and researchers to appreciate, study and develop new materials from renewable resources and new manufacturing technologies. However, literature reports that interfacial adhesion between natural fibers and polymeric matrix is a factor that affects the biocomposite mechanical properties, able to be improved by several types of surface treatments. Thus, coconut fiber mats were surface treated by atmospheric plasma jet, considered less aggressive to the environment when compared to chemical treatments, in order to improve interfacial adhesion with the polymer matrix to obtain biocomposites. Data from coconut fiber characterization shown that the treatment modified the fibers surface and consequently their hydrophilicity and surface energy, decreasing their permeability value. Processing parameters and most appropriate curing cycle were determined and defined as 80 °C for 210 min, 135 °C for 180 min and 160 °C for 120 min, without application of vacuum during the process and approximately 40 % fiber volume fraction. Ultrasonic acoustic inspection allowed evaluating the biocomposite plates processing by verifying possible imperfections caused by impregnation of the coconut fiber by the resin and its homogeneity. Thermogravimetric analysis indicated that the initial biocomposite degradation temp... (Complete abstract click electronic access below) / Mestre
246

Numerical solutions of continuous wave beam in nonlinear media

Huang, Jeffrey 01 January 1987 (has links)
Deformation of a Gaussian beam is observed when it propagates through a plasma. Self-focusing of the beam may be observed when the intensity of the laser increases the index of refraction of plasma gas. Due to the difficulties in solving the nonlinear partial differential equation in Maxwell's wave equation, a numerical technique has been developed in favor of the traditional analytical method. Result of numerical solution shows consistency with the analytical method. This further suggests the validity of the numerical technique employed. A three dimensional graphics package was used to depict the numerical data obtained from the calculation. Plots from the data further show the deformation of the Gaussian beam as it propagates through the plasma gas.
247

Computational study of arc discharges spark plug and railplug ignitors [sic] /

Ekici, Özgür, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
248

Pulsed electron-cyclotron resonance discharge experiment.

January 1966 (has links)
"MIT-3221-19." / Bibliography: p. 78-81. / Contract AT(30-1)-3221.
249

Gamma-ray spectra in fusion blanket mockups.

January 1965 (has links)
Bibliography: p. 106.
250

Study of a thermonuclear reactor blanket with fissile nuclides.

January 1965 (has links)
Bibliography: p. 99-101.

Page generated in 0.0391 seconds