Spelling suggestions: "subject:"iron(III) complexes"" "subject:"iron(III) 2complexes""
1 |
Studies on Photocytotoxic Iron(III) and Cobalt(III) Complexes Showing Structure-Activity RelationshipSaha, Sounik January 2010 (has links) (PDF)
Photodynamic therapy(PDT) has recently emerged as a promising new non-invasive treatment modality for a large number of neoplastic and non-neoplastic lesions. Photoexcitation of a photosensitizing drug in the tumor tissue causes generation of reactive oxygen species which results in cell death. The current porphyrinic photosensitizers suffer a wide range of drawbacks leading to the development of the chemistry of alternative photosensitizing agents in PDT. Among them, the 4d and 5d transition metal-based photosensitizers have been explored extensively with the exception of the 3d metal complexes. The objective of this thesis work is to design and synthesize photoactive iron(III) abd cobalt(III) complexes and evalutate their photonuclease and photocytotoxic potential.
Bioessential 3d metal ions provide an excellent platform for metal-based PDT drug designing as because of its varied spectral, magnetic and redox properties, with its complexes possessing rich photochemical behavior in aqueous and non-aqueous media. We have synthesized binary iron(III) complexes as netropsin mimics using amino acid Schiff bases derived from salicylaldehyde/napthaldehyde and arginine/lysine. The complexes were found to be good AT selective DNA binders and exhibited significant DNA photocleavage activity. To enhance the photodynamic potential, we further synthesized iron(III) complexes of phenolate-based ligand and planar phenanthroline bases. The DNA photocleavage activity of these complexes and their photocytotoxic potential in cancer models were studied. ROS generated by these complexes were found to induce apoptotic cell death. Ternary cobalt(III) complexes were synthesized to study the effect of the central metal atom. The diamagnetic cobalt(III) complexes were structurally dissimilar to their iron(III) analogues. Although the Co(III)/Co(II) redox couple is chemically and photochemically accessible but the Co(III)-dppz complex, unlike its iron(III)-dppz analogue, exhibited selective damage to hTSHR expressing cells but not in HeLa cells. A structure-activity relationship study on iron(III) phenolates having modified dppz ligands was carried out and it was found that electron donating group on the phenazine unit and an increase of the aromatic surface area largely improved the PDT efficiency. Finally, SMVT targeted iron(III) complexes with biotin as targeting moiety were synthesized and the in vitro efficacy of the complexes was tested in HepG2 cells over-expressing SMVTs and compared to HeLa amd HEK293 cells. The complexes exhibited higher phytocytotoxicity in HepG2 than in HeLa and cells and HEK293 cells. An endocytotic mode of uptake took place in HepG2 cells whereas in HEK293 cells, uptake is purely by diffusion. This is expected to reduce the side-effects and have less effect on cells with relatively less SMVTs.
In summary, the present research work opens up novel strategies for the design and development of primarily iron-based photosensitizers for their potential applications in PDT with various targeting moieties.
|
2 |
Spectroscopie Raman de complexes de fer(II) et fer(III) à transition de spinRollet, Frédéric-Guillaume 06 1900 (has links)
Les transitions de spin provoquent des changements de propriétés physiques des
complexes de métaux du bloc d les subissant, notamment de leur structure et propriétés
spectroscopiques. Ce mémoire porte sur la spectroscopie Raman de composés du fer(II) et
du fer(III), pour lesquels on induit une transition de spin par variation de la température ou
de la pression. Trois complexes de fer(II) de type FeN4(NCS)2 avec des comportements de
transition de spin différents ont été étudiés : Fe(Phen)2(NCS)2 (Phen : 1,10-Phénanthroline),
Fe(Btz)2(NCS)2 (Btz : 2,2’-bi-4,5-dihydrothiazine) et Fe(pyridine)4(NCS)2. Un décalage de
l’ordre de 50 cm-1 est observable pour la fréquence d’étirement C-N du ligand thiocyanate
des complexes FeN4(NCS)2, lors de la transition de spin induite par variation de la
température ou de la pression. Il est possible d’utiliser cette variation de fréquence afin de
tracer un profil de transition. Quatre complexes isomères de type FeL222(CN)2 (L222 : 2,13-
diméthyl-6,9-dioxa-3,12,18-triazabicyclo[12.3.1]-octadéca-1(18),2,12,14,16-pentaène) ont
également été étudiés. Un taux de décalage de l’ordre d’environ 0,03 cm-1/K est observé
pour plusieurs bandes du complexe FeL222(CN)2. La bande à 1415 cm-1 disparaît à plus
haute température au profit d’une bande à 1400 cm-1. Pour le complexe de chiralité R,R’,
les bandes à 1008 cm-1 et 1140 cm-1 se déplacent vers des fréquences plus élevées à partir
de 223 K. Les transitions de spin sont observées dans certains complexes de fer(III). Dans
cette famille de composés, le complexe Fe(EtDTC)3 (EtDTC : N,N-diéthyldithiocarbamate)
a été étudié . Aucun changement n’a été observé dans l’intensité des bandes d’étirement
fer-soufre sur les spectres à température variable. Cependant, la bande Fe-S associée à la
forme bas-spin à 530 cm-1 augmente en intensité au profit de la bande associée à la forme
haut-spin à 350 cm-1 lors des mesures à haute pression, passant d’un rapport d’amplitude de
50% à pression ambiante à 80% à 21 kbar. Un dédoublement de la bande d’étirement C-N
du ligand dithiocarbamate à 1495 cm-1 est également observé à des pressions supérieures à
5 kbar. Une comparaison des changements des fréquences de vibration de tous les
complexes est effectuée. / AbstractSpin crossover processes lead to significant changes of molecular structures and spectroscopic properties measured for complexes of d-block transition metals. This thesis focuses on vibrational Raman spectroscopy of iron(II) and iron(III) compounds with spin
transitions induced through temperature and pressure variations. Three iron(II) complexes
of type FeN4(NCS)2 with different spin transition patterns have been studied:
Fe(Phen)2(NCS)2 (Phen : 1,10-Phenanthroline), Fe(Btz)2(NCS)2 (Btz : 2,2’-bi-4,5-
dihydrothiazine) and Fe(pyridine)4(NCS)2. A 50 cm-1 shift has been found for the C-N
stretching frequency of the thiocyanate ligand in these compounds as a consequence of the
spin transition induced by temperature or pressure. These frequency variations have been
used to trace different transition profiles. Four different isomers of FeL222(CN)2 (L222 :
[2,13-dimethyl-6,9-dioxa-3,12,18-triazabicyclo[12.3.1]-octadeca-1(18),2,12,14,16-
pentaene]) type complexes have also been studied. A variation with temperature of
approximately 0,03 cm-1/K has been observed for a few bands for the FeL222(CN)2
complex. A band at 1415 cm-1 decreases in intensity in favour of a band at 1400 cm-1 as
temperature rises. The bands at 1008 cm-1 and 1140 cm-1 for the complex of R,R’
configuration shift to higher frequencies around 223 K. Spin transitions have also been
investigated in some iron(III) complexes. In this family of compounds, the Fe(EtDTC)3
(EtDTC : N,N-diéthyldithiocarbamate) complex has been studied. No change has been
observed in the intensity of the iron-sulphur stretching bands in spectra measured at
variable temperature. However, at high pressure the low-spin Fe-S band at 530 cm-1 gains
intensity compared to the high spin band at 350 cm-1. A splitting of the C-N stretching band
of the dithiocarbamate ligand at 1495 cm-1 is observed at pressures above 5 kbar. A
comparison of all changes in vibrational spectra is presented.
|
3 |
Spectroscopie Raman de complexes de fer(II) et fer(III) à transition de spinRollet, Frédéric-Guillaume 06 1900 (has links)
Les transitions de spin provoquent des changements de propriétés physiques des
complexes de métaux du bloc d les subissant, notamment de leur structure et propriétés
spectroscopiques. Ce mémoire porte sur la spectroscopie Raman de composés du fer(II) et
du fer(III), pour lesquels on induit une transition de spin par variation de la température ou
de la pression. Trois complexes de fer(II) de type FeN4(NCS)2 avec des comportements de
transition de spin différents ont été étudiés : Fe(Phen)2(NCS)2 (Phen : 1,10-Phénanthroline),
Fe(Btz)2(NCS)2 (Btz : 2,2’-bi-4,5-dihydrothiazine) et Fe(pyridine)4(NCS)2. Un décalage de
l’ordre de 50 cm-1 est observable pour la fréquence d’étirement C-N du ligand thiocyanate
des complexes FeN4(NCS)2, lors de la transition de spin induite par variation de la
température ou de la pression. Il est possible d’utiliser cette variation de fréquence afin de
tracer un profil de transition. Quatre complexes isomères de type FeL222(CN)2 (L222 : 2,13-
diméthyl-6,9-dioxa-3,12,18-triazabicyclo[12.3.1]-octadéca-1(18),2,12,14,16-pentaène) ont
également été étudiés. Un taux de décalage de l’ordre d’environ 0,03 cm-1/K est observé
pour plusieurs bandes du complexe FeL222(CN)2. La bande à 1415 cm-1 disparaît à plus
haute température au profit d’une bande à 1400 cm-1. Pour le complexe de chiralité R,R’,
les bandes à 1008 cm-1 et 1140 cm-1 se déplacent vers des fréquences plus élevées à partir
de 223 K. Les transitions de spin sont observées dans certains complexes de fer(III). Dans
cette famille de composés, le complexe Fe(EtDTC)3 (EtDTC : N,N-diéthyldithiocarbamate)
a été étudié . Aucun changement n’a été observé dans l’intensité des bandes d’étirement
fer-soufre sur les spectres à température variable. Cependant, la bande Fe-S associée à la
forme bas-spin à 530 cm-1 augmente en intensité au profit de la bande associée à la forme
haut-spin à 350 cm-1 lors des mesures à haute pression, passant d’un rapport d’amplitude de
50% à pression ambiante à 80% à 21 kbar. Un dédoublement de la bande d’étirement C-N
du ligand dithiocarbamate à 1495 cm-1 est également observé à des pressions supérieures à
5 kbar. Une comparaison des changements des fréquences de vibration de tous les
complexes est effectuée. / AbstractSpin crossover processes lead to significant changes of molecular structures and spectroscopic properties measured for complexes of d-block transition metals. This thesis focuses on vibrational Raman spectroscopy of iron(II) and iron(III) compounds with spin
transitions induced through temperature and pressure variations. Three iron(II) complexes
of type FeN4(NCS)2 with different spin transition patterns have been studied:
Fe(Phen)2(NCS)2 (Phen : 1,10-Phenanthroline), Fe(Btz)2(NCS)2 (Btz : 2,2’-bi-4,5-
dihydrothiazine) and Fe(pyridine)4(NCS)2. A 50 cm-1 shift has been found for the C-N
stretching frequency of the thiocyanate ligand in these compounds as a consequence of the
spin transition induced by temperature or pressure. These frequency variations have been
used to trace different transition profiles. Four different isomers of FeL222(CN)2 (L222 :
[2,13-dimethyl-6,9-dioxa-3,12,18-triazabicyclo[12.3.1]-octadeca-1(18),2,12,14,16-
pentaene]) type complexes have also been studied. A variation with temperature of
approximately 0,03 cm-1/K has been observed for a few bands for the FeL222(CN)2
complex. A band at 1415 cm-1 decreases in intensity in favour of a band at 1400 cm-1 as
temperature rises. The bands at 1008 cm-1 and 1140 cm-1 for the complex of R,R’
configuration shift to higher frequencies around 223 K. Spin transitions have also been
investigated in some iron(III) complexes. In this family of compounds, the Fe(EtDTC)3
(EtDTC : N,N-diéthyldithiocarbamate) complex has been studied. No change has been
observed in the intensity of the iron-sulphur stretching bands in spectra measured at
variable temperature. However, at high pressure the low-spin Fe-S band at 530 cm-1 gains
intensity compared to the high spin band at 350 cm-1. A splitting of the C-N stretching band
of the dithiocarbamate ligand at 1495 cm-1 is observed at pressures above 5 kbar. A
comparison of all changes in vibrational spectra is presented.
|
4 |
Insights into the Chemistry of Iron Complexes as Imaging and Photocytotoxic AgentsBasu, Uttara January 2015 (has links)
The current thesis addresses the various facets of the chemistry of photocytotoxic iron complexes including their syntheses, characterization, evaluation of the anti-proliferative activities in various cancer cell lines upon photo-exposure, mechanism of cell death, the cellular uptake, localization inside cells, the interaction with double stranded DNA and their ability to induce DNA photocleavage.
Chapter I presents a general introduction to cancer and the anticancer agents. It covers various procedures available for cancer treatment and different aspects of chemotherapy are discussed in details. The mechanism of action of several chemotherapeutic agents, the DNA cleavage pathways and the anticancer activity of bleomycins are delineated. Photo-chemotherapy or photodynamic therapy which has emerged as an alternative treatment modality is described. It also contains a brief description of ideal photosensitizers and the ones that are currently approved. The potential of transition metal complexes as photo-chemotherapeutic agents is discussed based on the recent literature reports on the prospective photocytotoxic metal complexes, the photo-release of cytotoxic molecules from metal complexes, the DNA cleavage activities and their cytotoxicities. The biochemistry of iron and its medical utility which prompted the development of iron based cytotoxins has been presented. The objective of the present investigation is also defined in this chapter.
Chapter II describes the syntheses, characterization, evaluation of visible light induced cytotoxicity and interaction with DNA of a series of iron(II) bis-terpyridine complexes. Some interesting redox behaviour observed for two of the complexes has been described in details and rationalized from theoretical calculations. The DNA binding affinities of the complexes and their ability to induce DNA photocleavage in green light are discussed. The importance of this work lies in the remarkable photocytotoxic behaviour of the iron(II) complexes with visible light which was not reported earlier.
Chapter III addresses the syntheses of a series of iron(III) catecholate complexes which upon irradiation with red light can initiate photoreactions to generate cytotoxic species and induce death in HeLa, HaCaT, MCF-7 and A549 cells. The mechanisms of cell death, effect of the complexes on the cell cycle under various conditions, the uptake inside cells and the cellular localization of the complexes are studied. The DNA binding affinities of the five complexes and their ability to induce DNA photocleavage in red light are also presented here. These are the first iron based complexes to show red light induced photocytotoxicity.
Chapter IV addresses the drawbacks associated with the aforementioned iron(III) catecholates and their modification with a mitochondria targeting triphenylphosphonium unit. The synthesis, characterization, photocytotoxicities in HeLa, HaCaT, MCF-7 and A549, cell death mechanisms and cellular uptake and localization of four iron(III) complexes are discussed.
Chapter V describes the syntheses, characterization and the biological activities of carbohydrate appended iron(III) complexes and their non-glucose analogues. The selective and faster internalization of the glyco-conjugated complexes in HeLa cells has been studied using various spectroscopic and microscopic techniques. The red light induced cytotoxicities of the complexes, their effect on the progression of the cell cycle with and without irradiation and the mechanisms of cell death are explored. DNA binding abilities and photocleavage of DNA are also discussed.
Chapter VI presents the syntheses, characterization of a series of iron(III) complexes of a pyridoxal derivative and their salicyldehyde analogues for exploring their differential photocytotoxicity and cellular uptake in cancer cells compared to
normal cells. The visible light induced cytotoxicities of the complexes in HeLa, HaCaT, MCF-7 A549 cells and HPL1D cells, their effect on the progression of the cell cycle in dark and light, the mechanisms of cell death and the localization of the complexes inside the cells are explored.
The references have been compiled at the end of each chapter and given as superscripts in the text. The complexes presented in this thesis are indicated by bold-faced numbers. Crystallography data of the complexes that are structurally characterized by single crystal X-ray crystallography are given in CIF format in the enclosed CD (Appendix-I). Due acknowledgements have been made wherever the work described is based on the findings of other investigators. Any unintentional omission that might have happened due to oversight is regretted.
INDEX WORDS: Iron complexes • Crystal structure • Red light induced cytotoxicity
• Cellular imaging • DNA binding • DNA photocleavage.
|
Page generated in 0.0452 seconds