• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 3
  • 1
  • Tagged with
  • 18
  • 18
  • 18
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Tools for flexible electrochemical microfabrication /

Wang, Weihua, January 2002 (has links)
Thesis (Ph. D.)--University of Washington, 2002. / Vita. Includes bibliographical references (leaves 100-118).
12

The interaction of HVEM generated point-defects with dislocations in Fe-Ni-Cr alloys

King, Simon L. January 1990 (has links)
The climb of dissociated dislocations in FCC materials is known to be complex: Observations of climb under HVEM irradiation in CuAl suggest that it, proceeds via the nucleation of interstitial loops directly onto individual partials. In silver, however, dissociated dislocations appear to constrict at an early stage in the irradiation, and dense vacancy cluster damage is seen to form in their vicinity. This thesis presents results and analysis of a study aimed at the determination of the interaction of HVEM generated interstitials and vacancies with pre-existing dislocations in a range of Fe-17Cr-Ni ternary alloys (with the nickel content varying between 15 and 40%). Two quaternary alloys (Fe-15%Ni-17%Cr-l%Si and Fe-15%Ni-17%Cr-2%Mo) arc also studied. As with earlier studies in CuAl and Ag, pre-existing dislocations in a (111) orientated foil were first characterized at subthreshold voltages employing the weak-becim technique, then irradiated with IMeV electrons at temperatures in the range 400-430°C and finally returned to the low voltage microscope for postirradiation characterization of the observed damage. Analysis of the post-irradiation microstructures indicates that interstitial climb only occurs at particularly favourable sites, such as pre-existing jogs: For the ternary alloys, constrictions are removed along edge and mixed dislocations, whilst zig-zagging of screw and near-screw dislocations may also be attributable to jog climb. After the annihilation of constrictions evidence of climb is not seen and pipe diffusion is thought to be occurring. The precipitation of small clusters, many of which are identifiable as vacancy SFT, is reminiscent of observations in silver. The addition of silicon to the matrix apparently leads to the creation of favourable sites for interstitial climb, as evidenced by the formation of high densities of new jogs after irradiation. Loops are seen to precipitate close to dislocations in the Mo-doped material. The origin of these loops is unclear at this stage. The relevance of the results to the phenomenon of void swelling is discussed.
13

Polarization characteristics of high-purity iron-rich iron-chromium-nickel alloys in sulfuric acid solutions /

Beauchamp, Richard Lawrence January 1966 (has links)
No description available.
14

Mechanical spectroscopy of quartz and Fe₁-ₓNiₓ : anelasticity in crust and core

Peng, Zhenwei January 2013 (has links)
No description available.
15

[en] SYNTHESIS AND CHARACTERIZATION OF NANOSTRUCTURED IRON-NICKEL ALLOYS / [pt] SÍNTESE E CARACTERIZAÇÃO DE LIGAS FE-NI NANOESTRUTURADAS

ORFELINDA AVALO CORTEZ 23 January 2009 (has links)
[pt] Oxido de níquel e hematita nanoestruturadas foram sintetizadas a partir da decomposição térmica de nitrato de níquel hexahidratado e nitrato férrico nonahidratado respectivamente, na faixa de temperatura de 350-450°C com variações no tempo reacional. Os tamanhos de cristalito do NiO e Fe2O3 foram estimados a partir dos difractogramas de Difração de Raios-X (XRD) utilizando os software PowderCell e Topas. Foi observado que o tamanho de cristalito varia em função da temperatura de sínteses. O resultado mais significante foi observado nos cristalitos de NiO os quais aumentam de 31 nm (T=350°C, 3hr) a 98 nm (T=450°C, 5hr). Foram realizados estudos cinéticos da redução NiO e Fe2O3 por hidrogênio na faixa de temperatura de 250-600°C. Ligas ferroníquel nanoestruturadas com composições FexNi100-x (x = 25, 50, and 75 w%) têm sido preparadas com sucesso por decomposição térmica de nitratos (formação de óxidos) e posterior redução com hidrogênio a 700ºC (formação das ligas). As ligas Fe-Ni, caracterizadas por difração de raios-X mostraram tamanhos de cristalito da ordem de 25nm. A fase rica em Ni, liga Fe25Ni75, apresentou uma estrutura γ(FCC). A liga Fe50Ni50 apresentou a existência de uma estrutura tetragonal. A fase rica em Fe, liga Fe75Ni25, contém uma mistura de fases α(BCC) e γ(FCC). A coexistência das fases e atribuída à segregação de fases que acontece nestas ligas como resultado da difusão atômica. A partir dos resultados das medições magnéticas efetuadas a 300K, pode-se estabelecer que as ligas Fe-Ni nanoestruturadas tem um comportamento superparamagnético. / [en] Nickel oxide and hematite nanostructured were successfully prepared by thermal decomposition from nickel nitrate hexahydrate and ferric nitrate nonahydrate in the temperature range of 350-450°C with variation of the time. The average crystallite sizes of NiO and Fe2O3 were estimated from X-ray diffraction (XRD) peaks using the PowderCell and Topas software. We observed that the crystallite size changes as a function of synthesis temperature. The significant result was the large size of the resulting NiO crystallites, which increased from 31nm (T=350°C, 3hr) to 98nm (T=450°C, 5hr). Kinetic studies of the reduction of NiO and Fe2O3 by hydrogen in the temperature range 250-600°C have been investigated. Nanostructured Fe-Ni alloys with compositions FexNi100-x (x = 25, 50, and 75 w%) have been successively prepared by thermal decomposition from mixtures of nitrates (formation of oxides) and reduction by hydrogen at 700ºC (formation of alloys). The Fe-Ni alloys, characterized by X-ray diffraction show crystallites sizes about 25nm. The Nirich phase, Fe25Ni75 alloys show the existence of γ(FCC) phase. The Fe50Ni50 alloy show the existence of tetragonal phase. The Fe-rich phase, Fe75Ni25 alloy, contain a mixture of α(BCC) and γ(FCC) phases. The coexistence of these phases is attributed to phase segregation occurring in these alloys as a result of enhanced atomic diffusion. It was inferred from results of magnetic measurements at 300K, that nanostructured Fe-Ni alloys were in a superparamagnetic state.
16

Intermediate temperature grain boundary embrittlement in nickel-base weld metals

Nissley, Nathan Eugene, January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 170-176).
17

Warm Working Behaviour Of Alpha-iron, Fe-Si, Fe-Co And Fe-Ni Alloys : A Study Using Processing Maps

Avadhani, G S 09 1900 (has links) (PDF)
No description available.
18

Studies On Dissimilar Metal Welding

Bhat, K Udaya 01 1900 (has links)
The area of research dealing with joining of dissimilar metals has been active in recent time. Although fusion and non-fusion techniques of joining have been effectively used for manufacturing components, a comprehensive scientific understanding of the process is lacking. This void exists both in fusion and non-fusion welding methods. The present investigation addresses some of these aspects. The investigation consists of two sections - Part A and Part B. Part A is on Friction welding and Part B deals with Fusion welding using laser. Each section has two chapters each. Following an introductory chapter, basic aspects of friction welding is presented in chapter 2. Chapter 3 deals with the work on friction welding of Fe-Cu couple. Fe-Cu couple is a system with positive heat of mixing. After a brief introduction on various non-equilibrium processes that can occur in this system, experimental details and results are presented. Using the results an attempt is made to understand the flash formation, formation of pores at the interface and the formation of chemically altered zone. It is observed that a chemically altered layer forms predominantly on the Cu side of the interface. It consists of Fe entrapped as fragments/fine crystals and as solid solution in Cu matrix. This zone has higher thickness at the edges than at the center. The mechanism of formation of this interfacial layer which is central to the joining process is related to the fracture and transport of fragments during plastic deformation. Fe forms solid solution in copper under non-equilibrium conditions promoted by shear energy. Using the concept of ballistic mixing, the formation of solid solution is explored. Using nano-indentation experiments mechanical properties of the weldment is estimated and an attempt is made to correlate mechanical properties with the amount of second element present in that location. The chapter 4 in part A deals with the friction welding of Ni-Ti couple. Ni-Ti system has negative heat of mixing and it forms a number of intermetallics. After a brief introduction to the chapter, various experimental techniques and strategies followed to carry out the experiments are explained. Following these, the results are presented. It is observed that TiNi3 formed at initial stage. Theories based on effective heat of formation and surface energy also predict the nucleation of TiNi3. With the continuation of frictional processes, the formation of TiNi and Ti2Ni phases were also observed. Formation of Ti2Ni was shown to greatly accelerate due to shear process. In this system two complementary processes like ballistic mixing and thermal assisted diffusion accelerate Ti2Ni formation. From mechanical tests it is found that Ti2Ni layer in the weldment is weak and hence formation of Ti2Ni in the weldment is detrimental. In chapter 5 an introduction to fusion welding of dissimilar metals is presented as background materials for the subsequent chapters. Chapter 6 deals with nature of segregation of Ag during laser welding of Fe-Ni couple. Ag is used as a tracer to probe fluid flow in the Fe-Ni couple during laser welding. Ag is immiscible both in Fe and Ni whereas Fe and Ni form a complete solution at an elevated temperature and in liquid state. Besides the experimental work, numerical simulation of the weld pool were carried out using homogeneous mixture model using SIMPLER algorithm. Experiments and simulations indicate that fluid flow is asymmetrical and in the deep penetration welding strong convection in the pool drives the tracer to the top of the pool. Overall distribution of the tracer is due to the combined effect of convection and diffusion. In shallow welding there exists a boundary region where tracer does not penetrate. In chapter 7 the results of instrumented indentation experiments on laser welded Fe-Cu weldment has been presented. It was earlier reported that during laser welding of Fe-Cu couple, a variety of microstructures evolves at various locations in the weldment and hardness of the weldment were found to be very high. Here an attempt has been made to explore in details the origin of such a high hardness. The chapter starts with a description of various microstructures that are observed in this weldment followed by the various procedures used for extracting data from instrumented indentation tests. It is followed by the presentation of the experimental results. It is found that rule of mixture along with Hall-Petch strengthening explains the observed increase in hardness of the weldment. The fine scale microstructure consisting of alternate Fe rich and Cu rich layers increases the hardness of the weldment. On copper side of the weldment, composition and scale of microstructure fluctuates and so also the hardness. Finally in chapter 8 overall conclusions of the various chapters in the thesis have been summarised.

Page generated in 0.0619 seconds