Spelling suggestions: "subject:"iron ore deology"" "subject:"iron ore caveology""
1 |
Geology and ore deposits of the Soudan Mine, St. Louis County, MinnesotaKlinger, F. L. January 1960 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1960. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
|
2 |
The precambrian iron-formations in the Limpopo belt as represented by the magnetite quartzite deposits at Moonlight, Koedoesrand area, Northern TransvaalBadenhorst, Jaco Cornelis 20 February 2013 (has links)
This dissertation is based largely on data that was accumulated during the execution of an exploration program by Iscor Ltd in the Northern Transvaal. The program included geological mapping, geophysical surveys and drilling, on Precambrian iron-formations in the Central Zone of the Limpopo Belt. The structure, stratigraphy, metamorphism, and economic importance of the magnetite quartzites and associated lithologies of the Moonlight prospect are discussed. The lithologies underlying the Moonlight prospect area consist of various pink- and grey-banded gneisses and pink granulite, together with a variety of metasedimentary supracrustal rock-types and concordant serpentinite bodies. The gneissic rock-types consist of chlorite-quartz-feldspar gneiss, chlorite-quartz-feldspar augen gneiss, hornblende-quartz-feldspar gneiss, biotite-quartz-feldspar gneiss, felsic and mafic granulite, and foliated amphibolite. The metasedimentary lithologies are represented by calc-silicates and marble, white quartz-feldspar granulite, magnetite quartzite, metaquartzite and garnet-bearing granulite and gneiss (metapelites). The concordant ultramafic bodies consist of serpentinite with lesser amphibolite, dunite, and chromitite. Intrusive pegmatites and diabase dykes are also present in the prospect area. Metamorphism reached granulite-facies, and more than one retrqgrade metamorphic event is recognized . Amphibolite-facies assemblages are present, but it is uncertain whether they represent another retrograde event . Polyphase deformation has produced intense and complex folding , resulting in irregular magnetite quartzite orebodies. The high metamorphic grades have resulted in medium- grained recrystallization of the magnetite-quartzites with a loss of prominent banding often associated with these rock-types . The magnetite quartzite occurs as three seperate but related ore zones, consisting of one or more ore-bands seperated by other lithologies. All three zones form poor outcrops and suboutcrops in a generally flat lying and sand covered area. · Although representing a low-grade iron ore (32% total Fe), the magnetite quartzite deposits at Moonlight are regarded as potentially viable due to the large opencast tonnages available at low stripping ratios, and the relatively cheap and easy beneficiation process needed to produce a magnetite concentrate with 69-70% total Fe.
|
3 |
A review of the deposition of iron-formation and genesis of the related iron ore deposits as a guide to exploration for Precambrian iron ore deposits in southern AfricaGapara, Cornwell Sine January 1993 (has links)
Iron-formations are ferruginous sedimentary rocks which have their source from fumarolic activity associated with submarine volcanism, with deposition of iron as oxides, hydroxides, and hydrous oxide-silicate minerals in shallow and/or deep marine sedimentary systems. The Precambrian ironformations of southern Africa have a wide age range, but are more prominently developed before 1.SGa. These iron formations occur in greenstone belts of the Kaapvaal and Zimbabwean cratons, in the Limpopo mobile belt, in cratonic basins and in the Damara mobile belt. The Archaean-Proterozoic sedimentary basins and greenstone belts host iron ore deposits in iron-formation. Iron formations have a lengthy geological history. Most were subjected to intense, and on occasions repeated, tectonic and metamorphic episodes which also included metasomatic processes at times to produce supergene/hypogene high grade iron ores. Iron-formations may be enriched by diagenetic, and metamorphic processes to produce concentrating-grade ironformations. Uplift, weathering and denudation, have influenced the mineral association and composition of the ores, within which magnetite, haematite and goethite constitute the major ore minerals. The iron resources of the southern Africa region include the Sishen deposits, hosting to about 1200 Mt of high grade direct shipping ore, at >63% Fe. Deposits of Zimbabwe have more than 33 000 Mt of beneficiable iron-formation. The evaluation of an iron ore prospect involves many factors which must be individually assessed in order to arrive at an estimate of the probable profitability of the deposit. Many of these are geological and are inherent in the deposit itself. Other factors are inherent aspects of the environment in which the ore is formed. Although the geological character of the ore does not change, technological advances in the processing techniques may have a great effect on the cost of putting the ore into marketable form. Geochemical, geophysical and remote sensing methods would be used for regional exploration. Chip sampling and drilling are useful for detailed exploration. Purely geological exploration techniques are applicable on a prospect scale in the exploration of iron ore deposits. Regional exploration targeting should choose late Archaean greenstone belts containing oxide facies iron-formation or Early Proterozoic basins located at craton margins as they are both known to host high-grade haematite orebodies formed by supergene/hypogene enrichment. Most types of iron ore deposits in southern Africa are described and classified. An attempt is made to emphasize the major controls on mineralisation, in the hope that these may be applicable to exploration both in the southern African region and within analogous settings around the world.
|
4 |
The influence of geological, genetic and economic factors on the ore reserve estimation of Kwaggashoek east iron ore depositLatorre-Muzzio, Gina January 1993 (has links)
Tectonics plays an important role in the genesis and subsequent mlnlng development of the Kwaggashoek East ore body. Lithological key units control the effectiveness of the ore forming processes, affecting the in situ ore reserve, The Kwaggashoek East deposit is the product of primary and secondary processes. A genetic model focussed on the source, migration and deposition of iron suggests a possible original source of iron as the product of very dilute hydrothermal input into deep ocean waters, with subsequent migration through structural conduits. Supergene processes account for the upgrading of the ore and the phosphorus redistribution. A good correlation between samples in a preliminary geostatistical study reflects the effectiveness of this process in the high grade ore zone. A broad overview of the economic issues which affect the commercialization of iron, indicates a balanced supply-demand situation for the five next years. The reserve estimation procedure requires accurate scientific terminology and appropriate methodology. Documentation is essential and should be detailed enough to allow for future reassessment. The results of three estimation methods in Kwaggashoek East differ by less than 5%. The accuracy of the final results depends more on geological interpretation and assumptions than on the method applied. Although optimization of grade and tonnage in the Kwaggashoek East deposit seems to be met with the actual cut-off grade used in the Thabazimbi mine district, the grade-quality concept introduced in this thesis indicates a decrease in the estimated reserves for the deposit
|
5 |
Petrographic and geochemical constraints on the origin and post-depositional history of the Hotazel iron-manganese deposits, Kalahari Manganese Field, South AfricaTsikos, Harilaos January 2000 (has links)
The giant Palaeoproterozoic manganese deposits of the Kalahari manganese field (KMF), Northern Cape Province, South Mrica, have been a world renowned resource of manganese ore for many decades. In recent years, the mineralogical composition, geochemistry and genesis of these deposits have been the objects of many geological investigations, yet their origin remains contentious up to the present day. A characteristic feature of the Kalahari deposits is the intimate association of manganese ore and iron-formation of the Superior-type, in the form of three discrete sedimentary cycles constituting the Hotazel Formation. This striking lithological association is an almost unique feature on a global scale. From that point of view, the present study is effectively the first attempt to shed light on the origin and post-depositional history of the Hotazel succession, using as prime focus the petrographic and geochemical characteristics ofthe host iron-formation. Petrographic and whole-rock geochemical information of iron-formation from the southern parts of the KMF, suggests that the Hotazel iron-formation is almost identical to other iron-formations of the world of similar age and petrological character. The rock exhibits essentially no high-grade metamorphic or low-temperature alteration effects. Mineralogically, it contains abundant chert, magnetite, subordinate amounts of silicate minerals (greenalite, minnesotaite, stilpnomelane) and appreciable concentrations of carbonate constituents in the form of coexisting calcite and ankerite. Such mineralogical composition is indicative of processes occurring in a diagenetic" to burial (up to very low-greenschist facies) metamorphic environment. Bulk-rock geochemical data point towards a simple composition with Si02, total Fe-oxide and CaO being the chief major oxide components. Whole-rock rare-earth element data suggest that the iron-formation precipitated from a water column with chemical signatures comparable to modern, shallow oceanic seawater. The virtual absence of positive Eu anomalies is a feature that compares well with similar data from Neoproterozoic, glaciogenic iron-formations of the Rapitan type, and suggests but only a dilute hydrothermal signal, poten!ially derived from distal submarine volcanic activity. Carbon and oxygen isotope data from iron-formation and Mn-bearing carbonates as well as overlying ferriferous limestone of the Mooidraai Formation, compare well with the literature. The former exhibit variable depletion relative to seawater in terms of both BC and 180, while the latter have signatures comparable to normal marine bicarbonate. Isotopic variations appear to be related to fluctuations in the amount of co-precipitated marine carbonate, in conjunction with processes of coupled organic matter oxidation - FelMn reduction in the diagenetic environment. Oxygen isotope data from quartz-magnetite-calcite triplets suggest that crystallisation took place under open-system conditions, with magnetite being the most susceptible phase in terms of fluid-rock isotopic exchange. Data also suggest that the calcite-magnetite pair may constitute a more reliable geothermometer than the quartz-magnetite one, mainly due to the interlinked diagenetic histories between calcite and magnetite. Iron-formation from the northern parts of the KMF can by categorised into three main classes, namely pristine, altered and oxidised. Pristine iron-formation is identical to the one seen in the southernmost parts of the field. Altered iron-formation corresponds to a carbonate-free derivative of intense oxidation and leaching processes at the expense ofpristine iron-formation, and contains almost exclusively binary quartz-hematite mixtures. The rock appears to have lost essentially its entire pre-existing carbonate-related components (i.e., Ca, Mg, Sr, most Mn and Ba) and displays residual enrichments in elements such as Cr, Th, V, Ni and Pb, which would have behaved as immobile constituents during low-temperature alteration. The low temperature origin of altered iron-formation is supported by oxygen isotope data from quartz-hematite pairs which indicate that isotopically light hematite would have derived from oxidation of magneftte and other ferroussilicate compounds in the presence of a low-temperature meteoric fluid, while quartz would have remained isotopically unchanged. Occasional occurrences of acmite-hematite assemblages suggest localised metasomatic processes related to the action ofNaCI-rich fluids at the expense of altered iron-formation. The conditions of acmite genesis are very poorly constrained due to the very broad stability limits of the mineral in environments ranging from magmatic to surface-related. Oxidised iron-formation constitutes a distinct rock-type and shares common attributes with both the pristine and the altered iron-formation. The rock contains hematite as an important constituent while the amount of magnetite is substantially reduced. With regard to carbonate nlinerals, calcite contents are clearly very low or absent, having being replaced in most instances by a single, Mgenriched, dolomite/ankerite:type species. Oxidised iron-formation contains somewhat higher amounts of iron and reduced amounts of Sr and Ba relative to pristine iron-formation, whereas enrichments in elements such as Ni, Th, Pb, Cr, and V are seen, similar to altered iron-formation. Oxidised iron-formation appears to have originated from processes of dissolution-mobilisationreprecipitation of solutes derived primarily from leaching that produced altered iron-formation. It is proposed that the Hotazel iron-formation and associated manganese deposits were formed as a result of episodic sea-level fluctuations in a stratified depositional environment that gradually evolved into a shallow carbonate platform. A critical parameter in the development of manganese sediment may include regional climatic patterns related to a glacial event (Makganyene diamictite) prior to deposition of the Hotazel strata. This suggestion draws parallels with processes that are believed to have led to the formation of worldwide iron-formations and associated manganese deposits subsequent to Neoproterozoic episodes of glaciation. Submarine volcanism related to the underlying Ongeluk lavas appears to have had very little (if any) metallogenic significance, while evidence for a sudden rise in the oxygen contents of the atmosphere and ambient waters is lacking. With regard to later alteration processes, combination of geological and geochemical data point towards the potential influence of surface weathering prior to deposition of rocks of the unconformably overlying Olifantshoek Supergroup, possibly coupled with fault- and/or thrustcontrolled fluid-flow and leaching of the Hotazel succession during post-Olifantshoek times.
|
6 |
Depositional history and mineralisation of tertiary channel iron deposits at Yandi, Eastern Pilbara, AustraliaStone, Michelle Susanne January 2005 (has links)
[Truncated abstract] Detailed sedimentological, petrographical, geochemical and palynological studies have provided insight into the source rocks and the processes that operated during formation of the Tertiary Yandi channel iron deposit (CID) of the eastern Pilbara, Western Australia. Yandi is the largest and most valuable CID in the world, accounting for more than 2.5% of global iron production in 2003, and is the type-example of CID. The Yandi CID occupies the palaeo-Marillana Creek in the central Hamersley Ranges. It is near-coincident-with the modern Marillana Creek which incised Proterozoic bedrock of the Weeli Wolli Formation (Hamersley Group) and associated dolerite intrusions. Three lithostratigraphic units fill the palaeo-Marillana Creek and comprise the Marillana Formation. The units in stratigraphic order are the: (1) Munjina Member; (2) Barimunya Member, which hosts the majority of the iron resource; and (3) Iowa Eastern Member. Fossil pollen and spores in organic-rich claystones in the Munjina Member indicate that deposition of the Marillana Formation most likely commenced in the Early Oligocene in response to erratic seasonal flows with high energy flood events and intervening quiescent suspension settling of clays. The Marillana Formation consists of twelve facies. These conglomerate and clay facies form three facies associations. The basal facies association is composed of polymictic conglomerate, clay and interbedded CID that represents a lag deposit along the base of the palaeochannel. This facies association characterises the Munjina Member. The second facies association consists of iron-rich conglomerate sheets, bars and subordinate scour-fills and characterises the Barimunya Member. Channel iron deposits of the overlying Iowa Eastern member consist of reworked Barimunya Member iron conglomerates. The upper facies association is polymictic conglomerate with clay that characterises the remainder of the Iowa Eastern Member. Polymictic iron conglomerate in the Munjina and Barimunya Members contains Weeli Wolli Formation and dolerite clasts indicating local derivation. Rare earth element profiles of the other iron conglomerate facies indicate derivation of the Barimunya and Iowa Eastern CID from a different source. These iron conglomerates are characterised by relatively flat LREE profiles. The LREE exhibit an enriched profile approaching the MREE [(average La/Nd)N = 0.7], and the HREE profile shows minor enrichment approaching ytterbium [(average Dy/Yb)N = 0.9]. Comparison of iron conglomerate REE profiles to those of the bedrock indicates that these conglomerates were most probably derived from the Joffre Formation BIF of the Hamersley Group
|
7 |
The tectonic evolution and volcanism of the Lower Wyloo Group, Ashburton Province, with timing implications for giant iron-ore deposits of the Hamersley Province, Western AustraliaMuller, Stefan G. January 2006 (has links)
[Truncated abstract] Banded iron formations of the ~27702405 Ma Hamersley Province of Western Australia were locally upgraded to high-grade hematite ore during the Early Palaeoproterozoic by a combination of hypogene and supergene processes after the initial rise of atmospheric oxygen. Ore genesis was associated with the stratigraphic break between Lower and Upper Wyloo Groups of the Ashburton Province, and has been variously linked to the Ophthalmian orogeny, late-orogenic extensional collapse, and anorogenic continental extension. Small spot PbPb dating of in situ baddeleyite by SHRIMP (sensitive highresolution ion-microprobe) has resolved the ages of two key suites of mafic intrusions constraining for the first time the tectonic evolution of the Ashburton Province and the age and setting of iron-ore formation. Mafic sills dated at 2208 ± 10 Ma were folded during the Ophthalmian orogeny and then cut by the unconformity at the base of the Lower Wyloo Group. A mafic dyke swarm that intrudes the Lower Wyloo Group and has close genetic relationship to iron ore is 2008 ± 16 Ma, slightly younger than a new syneruptive 2031 ± 6 Ma zircon age for the Lower Wyloo Group. These new ages constrain the Ophthalmian orogeny to the period <2210 to >2030 Ma, before Lower Wyloo Group extension, sedimentation, and flood-basalt volcanism. The ~2010 Ma dykes present a new maximum age for iron-ore genesis and deposition of the Upper Wyloo Group, thereby linking ore genesis to a ~21002000 Ma period of continental extension similarly recorded by Palaeoproterozoic terrains worldwide well after the initial oxidation of the atmosphere at ~2320 Ma. The Lower Wyloo Group contains, in ascending order, the fluvial to shallow-marine Beasley River Quartzite, the predominantly subaqueously emplaced Cheela Springs flood basalt and the Wooly Dolomite, a shelf-ramp carbonate succession. Field observations point to high subsidence of the sequence, rather than the mainly subaerial to shallow marine depositional environment-interpretation described by earlier workers. Abundant hydro-volcanic breccias, including hyaloclastite, peperite and fluidal-clast breccia all indicate quench-fragmentation processes caused by interaction of lava with water, and support the mainly subaqueous emplacement of the flood basalt which is also indicated by interlayered BIF-like chert/mudstones and below-wave-base turbiditic mass-flows.
|
8 |
Genesis of BIF-hosted hematite iron ore deposits in the central part of the Maremane anticline, Northern Cape Province, South AfricaLand, Jarred January 2014 (has links)
The Paleoproterozoic Transvaal Supergroup in the Northern Cape Province of South Africa is host to high-grade BIF-hosted hematite iron-ore deposits and is the country’s most important source of iron to date. Previous work has failed to provide a robust and all-inclusive genetic model for such deposits in the Transvaal Supergroup; in particular, the role of hydrothermal processes in ore-genesis has not been adequately clarified. Recent studies by the author have produced evidence for hydrothermal alteration in shales (Olifantshoek Supergroup) stratigraphically overlying the iron-ore intervals; this has highlighted the need to reassess current ore-forming models which place residual supergene processes at the core of oregenesis. This thesis focuses on providing new insights into the processes responsible for the genesis of hematite iron ores in the Maremane anticline through the use of newly available exploration drill-core material from the centre of the anticline. The study involved standard mineralogical investigations using transmitted/reflected light microscopy as well as instrumental techniques (XRD, EPMA); and the employment of traditional whole-rock geochemical analysis on samples collected from two boreholes drilled in the centre of the Maremane anticline, Northern Cape Province. Rare earth element analysis (via ICP-MS) and oxygen isotope data from hematite separates complement the whole-rock data. Iron-ore mineralisation examined in this thesis is typified by the dominance of Fe-oxide (as hematite), which reaches whole-rock abundances of up to 98 wt. % Fe₂O₃. Textural and whole-rock geochemical variations in the ores likely reflect a variable protolith, from BIF to Fe-bearing shale. A standard supergene model invoking immobility and residual enrichment of iron is called into question on the basis of the relative degrees of enrichment recorded in the ores with respect to other, traditionally immobile elements during chemical weathering, such as Al₂O₃ and TiO₂. Furthermore, the apparently conservative behaviour of REE in the Fe ore (i.e. low-grade and high-grade iron ore) further emphasises the variable protolith theory. Hydrothermally-induced ferruginisation is suggested to post-date the deposition of the post-Transvaal Olifantshoek shales, and is likely to be linked to a sub-surface transgressive hydrothermal event which indiscriminately transforms both shale and BIF into Fe-ore. A revised, hydrothermal model for the formation of BIF-hosted high-grade hematite iron ore deposits in the central part of the Maremane anticline is proposed, and some ideas of the author for further follow-up research are presented.
|
Page generated in 0.0853 seconds