• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 10
  • 9
  • 6
  • 2
  • 1
  • Tagged with
  • 85
  • 85
  • 42
  • 24
  • 22
  • 19
  • 19
  • 18
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

OXIDATION-REDUCTION PROPERTIES OF HIGH POTENTIAL NON-HEME IRON-SULFUR PROTEINS

Mizrahi, Isaac Albert, 1948- January 1977 (has links)
No description available.
12

The role of amino acids in the transmembrane and extra-membranous domains of the S. cerevisiae iron sulfur protein in its activity and stability in the cytochrome bc1̳ complex

Amyot, Suzelle M. January 1998 (has links)
Thesis (M.S.)--West Virginia University, 1998. / Title from document title page. On t.p. "1̳" is subscript. Document formatted into pages; contains xi, 49 p. : ill. Includes abstract. Includes bibliographical references (p. 46-48).
13

Iron-sulfur cluster biosynthesis. Iron-sulfur cluster transfer from holo ISU and ISA to apo ferredoxin

Wu, Shu-Pao, January 2004 (has links)
Thesis (Ph. D.)--Ohio State University, 2004. / Title from first page of PDF file. Document formatted into pages; contains xx, 161 p.; also includes graphics Includes bibliographical references (p. 153-161). Available online via OhioLINK's ETD Center
14

Isolation of in vivo intermediates in iron sulfur cluster biogenesis

Raulfs, Estella Callie 07 May 2009 (has links)
Iron-sulfur clusters are simple inorganic cofactors that are ubiquitous in living systems. The assembly of iron sulfur clusters is an essential process and must be carefully controlled in order to limit the release of toxic free iron or sulfide. Thus far there are three known protein systems for iron sulfur cluster assembly including the <i>nif, suf,</i> and <i>isc</i> systems. The <i>nif</i> system makes iron-sulfur clusters for nitrogenase production, while both the <i>suf</i> and <i>isc</i> systems provide iron-sulfur clusters for general cellular use. In <i>Azotobacter vinelandii</i> the isc operon contains eight genes which are transcribed together as a single operon: <i>iscR iscS iscU iscA hscB hscA fdx iscX</i>. The two central <i>isc</i> players include IscS, a cysteine desulfurase, and IscU the proposed site of iron-sulfur cluster assembly. Using <i>A. vinelandii</i> as a model organism, we have sought to better understand the mechanism of <i>in vivo isc</i> cluster assembly. In order test the scaffold hypothesis, we constructed strains that allowed for quick and rapid isolation of IscU. The purification of IscU with a bound [2Fe-2S] cluster strongly supports the model that IscU serves as the site of cluster synthesis <i>in vivo</i>. Additionally, using this same genetic system we isolated an IscU39DA variant with an oxygen stable bound [2Fe-2S] cluster. The IscU39<sup>DA</sup> scaffold came in tight α₂β₂ complex with IscS and was not separated by high salt, size exclusion, or reducing conditions. On the other hand, wild-type IscU also associated with IscS in a α₂β₂ complex, but readily dissociated upon increased salt concentration. The tight association of IscU39<sup>DA</sup> and IscS was found to occur regardless of the presence of a bound [Fe-S] cluster. We conclude that the IscU Asp-39 residue is essential for mediating the dissociation of IscU and IscS. In addition to studying IscS and IscU, we were interested to further understand how the isc system is regulated in response to external factors. Previous work has demonstrated that IscR controls expression of the isc operon in <i>Escherichia coli</i>. When IscR is holo this protein represses <i>isc</i> expression, while in its apo-form it allows <i>isc</i> expression. In <i>A. vinelandii</i> we found that ∆<i>iscR</i> strains exhibit in a 5 – 7 fold elevation of isc expression. Additionally, ∆<i>iscR</> strains reveal a small growth phenotype on plates, and a tendency to form spontaneous suppressor mutations allowing reversion to wild-type growth. Loss of apo-IscR function was found to cause a more severe effect on growth than the loss of holo-IscR function, suggesting IscR has cellular roles in addition to the regulation of the <i>isc</i> operon. / Ph. D.
15

Biosynthesis of Iron-Sulfur Clusters

Yuvaniyama, Pramvadee 11 April 1999 (has links)
It is not known whether biosynthesis of [Fe-S] clusters occurs through a spontaneous self-assembly process or an enzymatic process. However, in the <I>Azotobacter</I> <I>vinelandii</I> nitrogenase system, it has been proposed that NifS and NifU are involved in the mobilization of sulfur and iron necessary for nitrogenase-specific [Fe-S] cluster assembly. The NifS protein has been shown to have cysteine desulfurase activity and can be used to supply sulfur for the <I>in</I> <I>vitro</I> catalytic formation of [Fe-S] clusters. The activity of the NifU protein has not yet been established, but NifU could have functions complementary to NifS by mobilizing iron or serving as an intermediate site necessary for nitrogenase-specific [Fe-S] cluster assembly. A second iron-binding site within NifU was predicted to serve these functions because two identical [2Fe-2S] clusters that had previously been identified within the homodimeric NifU are tightly bound, and the NifU primary sequence is rich in cysteine residues. In this dissertation, I examined the possibility that NifU might mobilize iron or serve as an intermediate site for [Fe-S] cluster assembly, as well as the possibility that NifU could work in concert with NifS. Primary sequence comparisons, amino acid substitution experiments, and biophysical characterization of recombinantly-produced NifU fragments were used to show that NifU has a modular structure. One module is contained in approximately the C-terminal half of NifU and provides the binding site for the [2Fe-2S] cluster previously identified (the permanent [2Fe-2S] cluster). Cysteine residues Cys¹³⁷, Cys¹³⁹, Cys¹⁷⁵, and Cys¹⁷⁵ serve as ligands to the [2Fe-2S] cluster. Another module (referred to as NifU-1) is contained in approximately the N-terminal third of NifU and provides a second iron-binding site (rubredoxin-like Fe(III)-binding site). Cysteine residues Cys<sup>35</sup>, Cys⁶², Cys¹⁰⁶>, and a putative non-cysteine ligand of unknown origin provide coordination to the iron at this site. The significance of these iron-binding sites was also accessed by showing that cysteine residues involved in providing the rubredoxin-like Fe(III)-binding site and those that provide the [2Fe-2S] cluster binding site are all required for the full physiological function of NifU. The two other cysteine residues contained within NifU, Cys²⁷² and Cys²⁷⁵, are neither necessary for binding iron at either site nor are they required for the full physiological function of NifU. These results provide the basis for a model where iron bound at the rubredoxin-like sites within NifU-1 (one iron per monomer) is proposed to be destined for [Fe-S] cluster formation. It was possible to find in vitro evidence supporting this idea. First, it was demonstrated that NifU and NifS are able to form a transient complex. Second, in the presence of NifS as well as L-cysteine and a reducing agent, the Fe(III) contained at the rubredoxin-like sites within the NifU-1 or NifU homodimer can rearrange to form a transient [2Fe-2S] cluster between the two subunits. Finally, a mutant form of NifU-1 was isolated that appears to be trapped in the [2Fe-2S] cluster-containing form, and this [2Fe-2S] cluster (the transient [2Fe-2S] cluster) can be released from the polypeptide matrix upon reduction with dithionite. Previous work has shown that the permanent [2Fe-2S] clusters of as-isolated NifU are in the oxidized form but can be reduced chemically. The transient [2Fe-2S] cluster formed between rubredoxin-like sites, in contrast, is reductively labile. If the transient cluster serves as an intermediate [Fe-S] cluster to be destined for [Fe-S] cluster assembly, I propose that the permanent [2Fe-2S] clusters could have redox roles participating in either one or all of the following events. The permanent [2Fe-2S] clusters could have a redox function in the acquisition of iron for initial binding at the mononuclear sites. They could also provide reducing equivalents for releasing the transient [2Fe-2S] cluster. In addition, upon releasing the transient [2Fe-2S] cluster, the permanent [2Fe-2S] clusters could provide the appropriate oxidation state of the irons to be destined to nitrogenase metallocluster core formation. Finally, because proteins homologous to NifU and NifS are widely distributed in nature, it is suggested that the mechanism for NifU and NifS in the formation of nitrogenase-specific [Fe-S] clusters could represent a general mechanism for [Fe-S] cluster synthesis in other systems. / Ph. D.
16

Defining the role of cytosolic iron-sulfur cluster assembly targeting complex in identification of iron-sulfur cluster proteins

Vo, Amanda T. 07 November 2018 (has links)
Iron sulfur (FeS) clusters are ubiquitous cofactors required for numerous fundamental biochemical processes, including DNA replication and repair, transcription, and translation. In the cell, these metallocofactors require a dedicated protein pathway for assembly. The Cytosolic Iron Sulfur Cluster Assembly (CIA) pathway is conserved across higher-level eukaryotes and is responsible for building and inserting these cofactors into the FeS proteins that need them. A major unsolved problem in the FeS cluster biogenesis field is how so many diverse FeS proteins are identified for cluster insertion. Several studies have identified a multiprotein complex containing Cia1, Cia2, and Met18 as the CIA targeting complex responsible for FeS cluster recognition and target maturation. The CIA targeting complex has been shown to associate with an FeS cluster protein, Nar1. Nar1 is a CIA factor that plays an unknown role in cluster transfer. Little information is known about the structure of the CIA targeting complex its mechanism of FeS cluster protein recognition. In this thesis, I investigate the architecture of the CIA targeting complex as well as the role each subunit plays in identification of apo-proteins and iron-sulfur cluster insertion. Previous proteomic and cell biological studies from the Lill lab propose that the CIA targeting complex exists as a mixture of discrete complexes in vivo. Each of these complexes is responsible for recognizing a distinct subset of targets. Herein, we utilize affinity co-purification and size exclusion chromatography investigate connectivity of the targeting complex, identify stable subcomplexes, and define their roles in recognizing our two model targets Rad3 and Leu1. We determine the CIA targeting complex contains one Met18, two Cia1, and four Cia2 polypepides. This complex is required to recognize Leu1. Our experiments reveal the formation of the stable subcomplexes Cia1-Cia2 and Met18-Cia2, which is sufficient to identify to Rad3. We also interrogate the role of Nar1 in binding to targets and cluster transfer, excluding the model that it acts as an adapter for cluster transfer. Furthermore, using site directed mutagenesis, combined with our co-purification and in vivo assays, we map the key interfaces required to form the targeting complex and investigate how their mutations impacts CIA function in vivo. We identify the binding site of Cia1 on Cia2, as well as the general region in which Cia2 binds to Met18. Through these experiments, we shed light on the role these subunits of CIA targeting complex and Nar1 play in FeS target recognition and FeS cluster transfer.
17

Effects of mutations of the iron-sulfur protein on the function and structure of the cytochrome bc₁ complex of yeast mitochondria

Ebert, C. Edward. January 2003 (has links)
Thesis (Ph. D.)--West Virginia University, 2003. / Title from document title page. Document formatted into pages; contains viii, 144 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 129-144).
18

Iron-sulfur cluster biosynthesis. Iron-sulfur cluster transfer from Holo ISU and ISA to Apo Fd

Wu, Shu-Pao 17 March 2004 (has links)
No description available.
19

Functionaland structural studies of human frataxin: An iron chaperone protein for mitochondrial iron-sulfur cluster and heme biosyntheses

Yoon, Taejin 24 August 2005 (has links)
No description available.
20

Investigating the ATPase site of the cytosolic iron sulfur cluster assembly scaffold through regulated interactions with its partner proteins

Mole, Christa Nicole 19 September 2022 (has links)
Complex biosynthetic pathways are required for the assembly and insertion of iron-sulfur (Fe-S) cluster cofactors. The four cluster biogenesis systems that have been discovered require at least one ATPase, but generally the function of nucleotide hydrolysis is understudied. In the cytosolic iron sulfur cluster assembly (CIA) system, responsible for delivering [Fe4-S4] cluster cofactors for cytosolic and nuclear enzymes, the assembly scaffold comprises two homologous ATPases, called Nbp35 and Cfd1 in Saccharomyces cerevisiae. Genetic studies have discovered that the ATPase sites are required for scaffold function in vivo, but in vitro studies have failed to reveal why. The ATPase sites of the Nbp35 and Cfd1 contain a conserved P-loop nucleotide-binding protein fold with a deviant Walker A motif. Known metal trafficking P-loop NTPases’ metallochaperone mechanisms rely on both nucleotide binding and hydrolysis to properly assemble and deliver metal cargo. Furthermore, P-loop NTPases with a deviant Walker A motif commonly serve as central regulatory switches whose hydrolysis activity is modulated by small molecule cargos and/or protein partners. Therefore, it is proposed that the role of Nbp35-Cfd1’s ATPase sites is to direct Fe-S cluster movement by regulating protein and metal cargo interactions. The goal of this thesis is to better understand the scaffold reaction cycle by investigating the metallochaperone mechanism through Nbp35-Cfd1’s protein communications with its ATPase sites. To do this, the identification of at least one nucleotide-dependent partner protein must first be discovered. Herein, in vitro methods have been developed to uncover the scaffold’s ATPase site regulation of protein interactions. We describe a qualitative affinity copurification assay and a quantitative analysis for evaluating the dissociation constant and the kcat and Km values for ATP hydrolysis for the scaffold–partner protein complex. Additionally, the execution of these ATPase assays in an anaerobic environment can be applied to study nucleotide hydrolases involved in metallocluster biogenesis. These in vitro methods are applied to Nbp35-Cfd1 and it is discovered that ATP binding and hydrolysis regulates Nbp35-Cfd1 binding with two CIA factors: Dre2, a reductase proposed to assist in Fe-S cluster assembly, and Nar1, an adaptor between the early and late CIA factors. Although reconstitution of the scaffold’s Fe-S clusters results in a two-fold increase in its ATPase activity, the Dre2 and Nar1 ATP hydrolysis stimulation is dampened, demonstrating that both the Fe-S cargo and partner proteins regulate the scaffold’s ATPase reaction cycle. Next, the domains required for binding and ATPase stimulation were identified for Nbp35-Cfd1 with its partner proteins Dre2 and Nar1. The C-terminal Fe-S binding domain of Dre2 is sufficient for ATPase stimulation, while the Nar1 requires both its N- and C-terminal Fe-S binding domains to activate Nbp35-Cfd1’s ATP hydrolysis. The N-terminal Fe-S binding domain of Nbp35 is dispensable for binding and ATPase stimulation of both Dre2 and Nar1. The CIA targeting complex protein Cia1, which binds to Nar1, competes off Nbp35-Cfd1, indicating a shared binding domain. This data both validates and refines the current working model of the CIA system. To test whether the communication between the ATPase and Fe-S cluster binding domains of the CIA scaffold functions in an analogous manner across multiple species, a preliminary analysis was completed for whether Chaetomium thermophilum and Homo sapien Nbp35-Cfd1 exhibit similar ATPase characteristics and partner protein interaction as their S. cerevisiae ortholog. Human and fungal Nbp35-Cfd1 exhibit ATP binding and demonstrate nucleotide-dependent interactions with Dre2 and Nar1, suggesting that these interactions in a similar manner to effectively communicate in the CIA pathway. Overall, our study uncovers striking similarities between the CIA pathway and other systems which exploit a deviant Walker A NTPase to coordinate complex, multiprotein processes. Identification of the scaffold’s partner proteins significantly advances our understanding as to why the Nbp35/MRP-type Fe-S cluster biogenesis proteins are nucleotide hydrolases. This work provides some mechanistic insight into the functions of these proteins and provides a roadmap for how to investigate this large and widely distributed family and other P-loop NTPase metallochaperones. / 2024-09-19T00:00:00Z

Page generated in 0.0445 seconds