• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 10
  • 9
  • 6
  • 2
  • 1
  • Tagged with
  • 85
  • 85
  • 42
  • 24
  • 22
  • 19
  • 19
  • 18
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The function of yeast frataxin in iron-sulfur cluster biogenesis : a systematic mutagenesis of solvent-exposed side chains of the beta-sheet platform

Leidgens, Sébastien 26 September 2008 (has links)
Friedreich's ataxia is a neurodegenerative disorder caused by the low expression of a mitochondrial protein called frataxin. Studies in the yeast Saccharomyces cerevisiae have unraveled a role for the frataxin homologue (Yfh1p) in iron-sulfur cluster (Fe/S) biosynthesis, probably by interacting with the scaffold protein, Isu1p, and providing iron to the machinery. Yfh1p possesses a large â-sheet platform that may be involved in the interaction with other proteins through conserved residues at its surface. We have used directed mutagenesis associated with polymerase chain reaction (PCR) to study conserved residues localizing either at the surface of the protein, Thr110, Thr118, Val120, Asn122, Gln124, Gln129, Trp131, Ser137 and Arg141, or buried in the core of the protein, Ile130 and Leu132. Mutants T110A, T118A, V120A, N122A, Q124A, Q129A, I130A, W131A, L132A, S137A and R141A were generated in yeast. Growth on iron- or copper-containing medium was severely impaired for mutants Q129A, I130A, W131A and R141A. Others were roughly growing as well as the wild-type strain. We assessed the efficiency of Fe/S biosynthesis by measuring aconitase activity. The results confirmed those obtained on metal-containing medium: mutants Q129A, I130A, W131A and R141A showed a high decrease in their aconitase activity that dropped to the deleted strain level. Moreover, S137A showed also a decreased aconitase activity. We monitored the interaction between Yfh1p and Isu1p by co-immunoprecipitation and it turned out that only the W131A mutation affects directly this interaction. Even if the amount of Yfh1p determined by western blot analysis was highly decreased for several mutants, it is not sufficient to explain the phenotypes as they were poorly restored by overexpression of the mutant proteins to wild-type levels, except for W131F. We have concluded that Gln129, Trp131, and Arg141 are important for Yfh1p function, while Ile130 and Ser137 are required for the folding of the protein. All these residues cluster to the 4th and 5th â-strand of the protein. Our work has demonstrated for the first time the importance of this area for Yfh1p function and shows that Trp131 is involved in the interaction with Isu1p.
22

Molecular Mechanisms of Copper Homeostasis in Gram-negative Bacteria

George Thompson, Alayna Michelle January 2014 (has links)
Copper is a trace element utilized by organisms as a cofactor involved in redox chemistry, electron transport, photosynthesis, and oxidation reactions. In excess, copper is toxic; it can generate reactive oxygen species causing cellular damage, or poison other metalloproteins by replacing native metal cofactors. Gram-negative bacteria have developed homeostatic mechanisms to maintain the intracellular copper concentration in the face of changing environmental conditions. For Gram-negative enteric bacteria, like Esherichiacoli and Salmonella enterica serovar typhimurium, copper is encountered in industrial and institutional settings, where the metal is used as a broad-spectrum biocide. For environmental bacteria, such as the marine cyanobacterium Synechococcus sp. WH8102, copper stress occurs because human activity changes the concentration of copper in the ocean. This dissertation contains six chapters, relating four stories of our investigations into the molecular mechanisms of copper homeostasis in Gram-negative bacteria. Chapter I contains literature review and background on the implications of bacterial copper homeostasis. Chapter II reports our work investigating the expression of two E. coli proteins, CusF and CusB, upon copper stress; we show that CusF expresses at a ~10-fold molar excess over CusB. Chapter III describes a collaboration between our lab and Jose Argüello's lab at Worcester Polytechnic Institute, and we show that CusF can acquire Cu(I) from CopA. Our results from Chapters II and III show that CusF functions as a major copper chaperone in the periplasm of E. coli. Chapter IV details our work characterizing a novel protein from marine cyanobacteria, Synw_0921. Although Synw_0921 is believed to be involved in copper homeostasis, we show that it is an iron-sulfur cluster protein. Bioinformatic analysis suggests that Synw_0921 represents a new family of proteins that help marine cyanobacteria adapt to copper changes in their unique environment. Chapter V relates our work on CueR and GolS, two homologous sensor proteins with distinct metal-dependent transcriptional activation; we find that the activity cannot be explained by binding affinity differences. Chapter VI concludes with final thoughts on the intersection of biochemistry and molecular biology in the important process of understanding copper homeostasis.
23

Characterization of an Iron-Sulfur Binding Protein in the Tail Tip Complex of Bacteriophage Lambda

Tam, William 27 November 2013 (has links)
The assembly of λ tail requires the action of 11 gene products which must interact in an organized fashion to assemble infectious tail particles. GpL is an essential protein for the formation of the tail tip complex and necessary for the assembly of λ tail. The work described here has shown that gpL and its homologues contain two domains where the C-terminal domain coordinates an oxygen-sensitive [4Fe-4S] 2+ cluster using 4 highly conserved cysteines. This is the first report of a bacteriophage morphogenetic protein to coordinate a [4Fe-4S]2+ cluster. Through two individual cysteine mutants, C184A and C228A, it was determined that these mutant proteins coordinate a [2Fe-2S]2+ cluster also using 4 cysteines; the fourth cysteine being non-conserved. λ tails assembled with cysteine mutant gpL resulted in a 1000-fold decrease in the titer of active tails and tail particles could not be detected by TEM indicating that λ tails cannot be assembled with cysteine mutant gpL. I propose that the coordination of a [4Fe-4S] cluster with the four conserved cysteines maintains a conformation in gpL that can optimally interact with other tail proteins for efficient tail assembly.
24

Characterization of an Iron-Sulfur Binding Protein in the Tail Tip Complex of Bacteriophage Lambda

Tam, William 27 November 2013 (has links)
The assembly of λ tail requires the action of 11 gene products which must interact in an organized fashion to assemble infectious tail particles. GpL is an essential protein for the formation of the tail tip complex and necessary for the assembly of λ tail. The work described here has shown that gpL and its homologues contain two domains where the C-terminal domain coordinates an oxygen-sensitive [4Fe-4S] 2+ cluster using 4 highly conserved cysteines. This is the first report of a bacteriophage morphogenetic protein to coordinate a [4Fe-4S]2+ cluster. Through two individual cysteine mutants, C184A and C228A, it was determined that these mutant proteins coordinate a [2Fe-2S]2+ cluster also using 4 cysteines; the fourth cysteine being non-conserved. λ tails assembled with cysteine mutant gpL resulted in a 1000-fold decrease in the titer of active tails and tail particles could not be detected by TEM indicating that λ tails cannot be assembled with cysteine mutant gpL. I propose that the coordination of a [4Fe-4S] cluster with the four conserved cysteines maintains a conformation in gpL that can optimally interact with other tail proteins for efficient tail assembly.
25

Protein coevolution and coadaptation in the vertebrate bc1 complex / /

Baer, Kimberly Kay, January 2007 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Biology, 2007. / Includes bibliographical references.
26

A study of the CDGSH protein family: biophysical and bioinformatic analysis of the [2FE-2S] cluster protein mitoneet

Bak, Daniel 18 March 2016 (has links)
Iron-sulfur clusters, an important class of redox active cofactors, are ligated by protein-based Cys ligands in a variety of nuclearities. Traditionally, these clusters serve as one-electron transfer units, though many clusters are capable of catalytic activity and sensing functions. Recently, a greater number of iron-sulfur clusters with non-Cys ligation have been identified, wherein one or more of the Cys ligands are replaced by an alternative amino acid residue such as His or Asp. In most cases the role of this ligand substitution is unknown. Some hypotheses are that non-Cys ligation may modify reduction potential, allow for proton-coupled electron transfer, or modulate cluster stability. The human mitoNEET protein contains a 1-His, 3-Cys ligated [2Fe-2S] cluster, identified by the presence of a CDGSH peptide motif. MitoNEET is a binding target for the type II-diabetes drug, pioglitazone, and is implicated in controlling mitochondrial iron levels. How exactly mitoNEET functions in the cell is unknown, as is the role its uniquely ligated FeS cluster may play. This thesis uses mitoNEET as a model for the study of non-Cys ligated FeS clusters and their biological function. Protein film voltammetry was used to examine the pH-dependent electrochemical properties of the mitoNEET cluster, indicating that multiple as yet unidentified protonations control redox potential and that drug binding impacts cluster reduction and protonation. Additionally, the effect of reduction and protonation on cluster and protein structure instability was examined through absorbance and circular dichroism measurements, suggesting an important role for cluster lability in protein function. The CDGSH-motif family of [2Fe-2S] cluster-binding proteins was examined using protein similarity networks. This technique highlights the evolutionary relationship among these proteins, and has led to further work examining the DUF1271 domain containing proteins E. coli YjdI and A. vinosum Alvin0680 (a CDGSH-DUF1271 fusion). This work furthers the scientific knowledge of non-Cys ligated Fe-S clusters by improving our understanding of how the mitoNEET His-ligand contributes to proton-coupled electron transfer and cluster instability, and how the broader class of CDGSH-motif proteins is organized.
27

Investigating Iron Transport and Utilization Features of Acinetobacter baumannii

Zimbler, Daniel Lawrence 29 March 2013 (has links)
No description available.
28

Iron-sulfur Cluster Trafficking – Extension of Nfu Protein Function to Novel Protein Partners and Cluster Delivery Mechanisms

Wachnowsky, Christine January 2017 (has links)
No description available.
29

Investigating the Roles of the Iron-Sulfur Proteins Monothiol Glutaredoxin 5, ISCA1, and ISCA2

Olive, Joshua A. January 2017 (has links)
No description available.
30

Substrate recognition by the cytosolic iron sulfur cluster targeting complex

Marquez, Melissa Danae 03 November 2022 (has links)
The cytosolic iron sulfur cluster assembly (CIA) pathway is responsible for the maturation of >40 cytosolic and nuclear iron sulfur (FeS) proteins critical for fundamental processes such as DNA replication, transcription, and translation. The final stages of the pathway require the CIA targeting complex, which is composed of Cia1, Cia2, and Met18. This large multiprotein complex is proposed to recognize apo-enzyme substrates and insert their FeS clusters. However, it is unclear how these substrates are identified and how the CIA targeting complex mediates cofactor insertion. In this thesis, I mapped the protein-protein interaction sites critical for formation of the CIA targeting complex and discovered the first peptide motif that is both necessary and sufficient for recognition of a subset of FeS proteins by the CIA system. Cia1’s seventh beta-propeller blade was found to bind to Cia2, while Cia2’s fifth conserved region mainly interacts with Cia1, via an in vitro affinity co-purification assay. A quantitative MicroScale Thermophoresis assay supported these findings, in addition this approach affirmed that Cia2’s N-terminal intrinsically disordered domain and hyperreactive cysteine are dispensable for CIA targeting complex assembly. In collaboration with the Drennan Lab at MIT, Met18 was discovered to form a hexamer via cryo-EM. Met18 is proposed to arrange into a hexamer before its CIA-related function. Hexamer formation and Cia2 binding depend on Met18’s C-terminus, whereas Leu1 recognition relies on Met18’s N-terminus. A C-terminal W motif was demonstrated as both necessary and sufficient for identification of a subset of FeS proteins by the CIA targeting complex. A bioinformatics analysis revealed roughly 20% of CIA client proteins, including substrates, factors, and adaptors, terminate in a conserved [LTQ]-[DE]-[W]-COO- motif. CIA recognition depends on the C-terminal aromatic side chain and the carboxy terminus. This tripeptide motif is also sufficient for identification by the CIA system when attached to SUMO. Moreover, a series of competition experiments showed that the CIA targeting complex contains distinct, non-overlapping binding sites for client proteins where Cia1 serves as the docking site for the C-terminal W motif. Altogether, the first recognition motif is defined for one in five of CIA client proteins. / 2024-11-03T00:00:00Z

Page generated in 0.9919 seconds