• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Policy formulation in communist China the case of the Mass Irrigation Campaign, 1957-58

Oksenberg, Michel, January 1900 (has links)
Thesis--Columbia University. / Xerox copy. Bibliography: leaves 700-715.
2

Pathways to collective action : a study of local irrigation governance and management in central China

Zhou, Qian, 周茜 January 2014 (has links)
This study presents a diagnostic analysis of how two types of governance structures (water user associations versus collective irrigation institutions) at Hubei, issue their impacts on local irrigation governance and management, to produce a collective action outcome in irrigation systems. In particular, it focuses on (1) at the meso level, institutional analyses of irrigation management incorporate physical, community, and institutional attributes, and their interactions to configure possible pathways to collective outcomes within Hubei’s settings, and (2) at the micro level, the underlying mechanisms that offer individuals incentives to cooperate with each other for irrigation activities. Drawing upon a theoretical debate about rationales for promoting or limiting the establishment and development of water user associations, and empirical puzzling phenomena observed in Central China, three research hypotheses are posited accordingly. Determinants of collective outcomes in local irrigation governance and management are highlighted from irrigation literature. Employing Elinor Ostrom’s Institutional Analysis and Development Framework, an analytical framework exploring irrigation governance patterns in Central China is introduced. A mixed research method is applied in this study. At the meso level, 32 irrigation systems are selected to run a Qualitative Comparative Analysis; at the micro level, four irrigation systems are identified out for an in-depth comparative case study. In the end, three pathways to collective action, and four pathways to water adequacy, are generalized respectively. Evidence from 32 irrigation systems in central China indicates that both WUA-managed irrigation systems and collective irrigation systems have the capacity to organize collective irrigation activities successfully in local settings. For one thing, WUA is only one of the many factors affecting collective outcomes, and that the impact of WUA really depends on how it is nested within the larger configuration of factors; thus, challenging the belief of many government officials and analysts that WUA institution is a panacea for irrigation problems. For the other, collective irrigation systems could also achieve collective action, if attributes configured appropriately. This demonstrates that collective irrigation institution, in and of itself, is not automatically malign; given this, moves towards participatory governance do not necessarily render traditional hierarchical government interventions obsolete. Last but not least, this study also identifies a third governance institution, namely, the lineage group. Findings indicate that as informal solidary entities, lineage groups have important contributions to rural governance, as long as they are nested within the appropriate attributes configurations. Referring to the pathways to water adequacy, it is found that the emergence of collective action alone does not necessarily translate into water adequacy at the tail end of the irrigation systems. The four case studies not only entail some pathways to collective action, but also exemplify complicated and diverse reasons that might lead to collective failures. Comparing the successful cases with the failure ones, boundary rules, position rules, choice rules, and payoff rules explain the systematic differences at the operational level, while information rules, aggregation rules, and scope rules that operate at the collective level, appear to have minimal effect here. / published_or_final_version / Politics and Public Administration / Doctoral / Doctor of Philosophy
3

Landfill leachate irrigation: evaluation of plant productivity and soil toxicity.

January 2006 (has links)
Tsang Chin-kan. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 165-176). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgements --- p.v / Table of contents --- p.vi / List of tables --- p.ix / List of figures --- p.x / List of plates --- p.xii / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- Municipal solid waste generation and disposal --- p.1 / Chapter 1.2 --- Land filling --- p.3 / Chapter 1.3 --- Landfill sturcture --- p.6 / Chapter 1.3.1 --- Landfill envelope --- p.6 / Chapter 1.3.2 --- Landfill lining --- p.6 / Chapter 1.3.3 --- Leach ate collection and removal system --- p.9 / Chapter 1.3.4 --- Gas collection and control system --- p.9 / Chapter 1.3.5 --- Final cover system --- p.9 / Chapter 1.4 --- Landfill leach ate generation and characterization --- p.11 / Chapter 1.4.1 --- Landfill stabilization and leachate characteristics --- p.13 / Chapter 1.4.1.1 --- Aerobic phase / Chapter 1.4.1.2 --- Acetogenic phase / Chapter 1.4.1.3 --- Methanogenic phase / Chapter 1.4.2 --- Leachtate characteristic and landfill age --- p.15 / Chapter 1.5 --- Toxicity of landfill leachate --- p.17 / Chapter 1.6 --- Leachate treatment --- p.18 / Chapter 1.6.1 --- Land disposal --- p.19 / Chapter 1.6.1.1 --- Leachate recirculation / Chapter 1.6.1.2 --- Leachate irrigation / Chapter 1.7 --- Landfills in Hong Kong --- p.25 / Chapter 1.7.1 --- Landfill leachate generation in Hong Kong --- p.27 / Chapter 1.8 --- Selection of sampling sites --- p.29 / Chapter 1.9 --- Knowledge gaps --- p.33 / Chapter 1.10 --- Aims of thesis --- p.34 / Chapter 1.11 --- Project outlines --- p.34 / Chapter Chapter 2 --- Species selection for leachate irrigation / Chapter 2.1 --- Introduction --- p.35 / Chapter 2.2 --- Materials and Methods --- p.36 / Chapter 2.2.1 --- Leachate collection --- p.38 / Chapter 2.2.2 --- Chemical analysis of leachate --- p.38 / Chapter 2.2.3 --- Greenhouse pot experiment --- p.40 / Chapter 2.2.4 --- Plant harvesting and post harvest analysis --- p.43 / Chapter 2.2.4.1 --- Foliar N and P / Chapter 2.2.5 --- Statistical analysis and test endpoints --- p.43 / Chapter 2.3 --- Results and Discussion --- p.43 / Chapter 2.3.1 --- Leachate composition --- p.43 / Chapter 2.3.2 --- Plant growth performance --- p.45 / Chapter 2.3.3 --- Biomass production --- p.54 / Chapter 2.3.4 --- Chlorophyll fluorescence --- p.54 / Chapter 2.3.5 --- Tissue nutrient contents --- p.58 / Chapter 2.3.5.1 --- Foliar N / Chapter 2.3.5.2 --- Foliar P / Chapter 2.3.6 --- Effects on N-fixation --- p.60 / Chapter 2.3.7 --- Factors affecting N-fixation regarding leachate irrigation --- p.63 / Chapter 2.3.7.1 --- Soil mineral N content / Chapter 2.3.7.2 --- Soil acidity / Chapter 2.3.7.3 --- Salinity / Chapter 2.3.7.4 --- Soil aeration / Chapter 2.3.8 --- Species selection --- p.67 / Chapter 2.4 --- Conclusions --- p.68 / Chapter Chapter 3 --- Plant growth response of leachate irrigation on phosphorus-amended soil / Chapter 3.1 --- Introduction --- p.71 / Chapter 3.2 --- Materials and Methods --- p.73 / Chapter 3.2.1 --- Leachate sampling and analysis --- p.73 / Chapter 3.2.2 --- Experimental setup --- p.73 / Chapter 3.2.3 --- Plant and soil sampling --- p.74 / Chapter 3.2.3.1 --- Soil pH and electrical conductivity (EC) / Chapter 3.2.3.2 --- Soil N / Chapter 3.2.3.3 --- Soil P / Chapter 3.2.4 --- Statistical analysis --- p.76 / Chapter 3.3 --- Results and Discussion --- p.76 / Chapter 3.3.1 --- Leachate composition --- p.76 / Chapter 3.3.2 --- Plant growth performance --- p.78 / Chapter 3.3.3 --- Biomass --- p.83 / Chapter 3.3.4 --- Tissue contents --- p.87 / Chapter 3.3.4.1 --- Foliar N / Chapter 3.3.4.2 --- Foliar P / Chapter 3.3.5 --- Soil --- p.91 / Chapter 3.3.5.1 --- pH and electrical conductivity / Chapter 3.3.5.2 --- Soil N / Chapter 3.3.5.3 --- Soil P / Chapter 3.3.5.4 --- Addition of lime and gypsum / Chapter 3.4 --- Conclusions --- p.102 / Chapter Chapter 4 --- Responses in plant growth and soil biology to prolonged landfill leachate irrigation / Chapter 4.1 --- Introduction --- p.105 / Chapter 4.2 --- Materials and Methods --- p.107 / Chapter 4.2.1 --- Leachate sample and collection --- p.107 / Chapter 4.2.2 --- Soil column design --- p.107 / Chapter 4.2.3 --- Plant establishment --- p.107 / Chapter 4.2.4 --- Leachate application --- p.108 / Chapter 4.2.5 --- Soil and plant analysis --- p.108 / Chapter 4.2.5.1 --- Soil texture / Chapter 4.2.5.2 --- SOM / Chapter 4.2.5.3 --- Soil chloride content / Chapter 4.2.6 --- Soil and plant analysis --- p.110 / Chapter 4.2.6.1 --- Dehydrogenase / Chapter 4.2.6.2 --- Phosphatase / Chapter 4.2.6.3 --- Urease / Chapter 4.2.6.4 --- Nitrification / Chapter 4.2.7 --- Percolate --- p.112 / Chapter 4.2.8 --- Statistical analysis --- p.112 / Chapter 4.3 --- Results and Discussion --- p.113 / Chapter 4.3.1 --- Leachate --- p.113 / Chapter 4.3.2 --- Plants --- p.113 / Chapter 4.3.2.1 --- Plant growth / Chapter 4.3.2.2 --- Tissue contents / Chapter 4.3.3 --- Soil --- p.121 / Chapter 4.3.3.1 --- Soil texture / Chapter 4.3.3.2 --- pH and EC / Chapter 4.3.3.3 --- Soil N / Chapter 4.3.3.4 --- Soil P / Chapter 4.3.3.5 --- Soil C1' / Chapter 4.3.3.6 --- SOM / Chapter 4.3.4 --- Soil enzyme and nitrification --- p.132 / Chapter 4.3.4.1 --- Dehydrogenase / Chapter 4.3.4.2 --- Phosphatase / Chapter 4.3.4.3 --- Urease / Chapter 4.3.4.4 --- Nitrification / Chapter 4.3.4.5 --- Correlation analysis / Chapter 4.3.5 --- Percolate --- p.144 / Chapter 4.3.6 --- N balance --- p.150 / Chapter 4.3.7 --- N saturation --- p.153 / Chapter 4.4 --- Conclusions --- p.156 / Chapter Chapter 5 --- General conclusions / Chapter 5.1 --- Summary of findings --- p.158 / Chapter 5.2 --- General considerations regarding leachate irrigation --- p.161 / Chapter 5.3 --- Research prospects --- p.162 / References --- p.165
4

Landfill leachate as a source of plant nutrients.

January 2005 (has links)
Cheng Chung-yin. / Thesis submitted in: December 2004. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 185-195). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgements --- p.vi / Table of contents --- p.viii / List of tables --- p.xi / List of figures --- p.xii / List of plates --- p.xiv / Plant species used in the experiments --- p.xv / Chapter 1 Introduction / Chapter 1.1 --- Soil wastes as an environmental challenge --- p.1 / Chapter 1.2 --- Landfilling --- p.1 / Chapter 1.2.1 --- Waste degradation --- p.4 / Chapter 1.2.2 --- Control of degradation by-products --- p.6 / Chapter 1.3 --- Landfill leach ate --- p.8 / Chapter 1.3.1 --- Generation and control of landfill leachate --- p.8 / Chapter 1.3.2 --- Leachate characterization --- p.10 / Chapter 1.3.3 --- Leachate from local landfills --- p.15 / Chapter 1.3.4 --- Leachate treatment --- p.15 / Chapter 1.4 --- Leachate irrigation --- p.16 / Chapter 1.4.1 --- Common practices of wastewater irrigation --- p.17 / Chapter 1.4.1.1 --- Spray irrigation / Chapter 1.4.1.2 --- Rapid infiltration / Chapter 1.4.1.3 --- Overland flow / Chapter 1.4.2 --- Effects of leachate irrigation --- p.19 / Chapter 1.4.2.1 --- Effect of leachate irrigation on soil percolate / Chapter 1.4.2.2 --- Effect of leachate irrigation on soil / Chapter 1.4.2.3 --- Effect of leachate irrigation on plants / Chapter 1.5 --- Landfilling in Hong Kong --- p.24 / Chapter 1.5.1 --- Climate --- p.24 / Chapter 1.5.2 --- Geography and economy --- p.25 / Chapter 1.5.3 --- Waste composition --- p.25 / Chapter 1.5.4 --- Leachate sampling sites --- p.27 / Chapter 1.6 --- Objectives of this study --- p.30 / Chapter 1.6.1 --- Knowledge gaps --- p.30 / Chapter 1.6.2 --- Project outline --- p.33 / Chapter Chapter 2 --- Phytotoxicity evaluation of landfill leachate using seed germination tests / Chapter 2.1 --- Introduction --- p.34 / Chapter 2.1.1 --- Tests involving the use of germinating seeds --- p.34 / Chapter 2.1.2 --- Importance of germination to plants --- p.34 / Chapter 2.1.3 --- Advantages of germination tests --- p.35 / Chapter 2.1.4 --- Limitations of using germination as an endpoint --- p.35 / Chapter 2.1.5 --- Methods of germination test --- p.36 / Chapter 2.1.5.1 --- Test design / Chapter 2.1.5.2 --- Plant species / Chapter 2.1.5.3 --- Measurement endpoints / Chapter 2.1.5.4 --- Statistical analysis and test endpoints / Chapter 2.2 --- Objectives of study --- p.41 / Chapter 2.3 --- Materials and methods --- p.42 / Chapter 2.3.1 --- Sample collection --- p.42 / Chapter 2.3.2 --- Chemical analysis --- p.42 / Chapter 2.3.3 --- Statistical analysis --- p.43 / Chapter 2.3.4 --- Phytotoxicity assay --- p.43 / Chapter 2.4 --- Results and discussion --- p.44 / Chapter 2.4.1 --- Leachate characterization --- p.44 / Chapter 2.4.1.1 --- Comparison among landfill sites / Chapter 2.4.2 --- Phytotoxicity assay --- p.51 / Chapter 2.4.2.1 --- Dose response relationships / Chapter 2.4.2.2 --- Implication of hormetic-like response on the selection of statistical model / Chapter 2.4.2.3 --- Phytotoxicity of leachate samples / Chapter 2.4.2.4 --- Comparison between species / Chapter 2.5 --- Conclusions --- p.65 / Chapter Chapter 3 --- Leachate irrigation: Effects on plant performance and soil properties / Chapter 3.1 --- Introduction --- p.67 / Chapter 3.2 --- Materials and methods --- p.70 / Chapter 3.2.1 --- Leachate sampling and analysis --- p.70 / Chapter 3.2.2 --- Leachate irrigation experiment --- p.71 / Chapter 3.2.3 --- Soil and plant analysis --- p.73 / Chapter 3.2.3.1 --- Soil sampling and preparation / Chapter 3.2.3.2 --- Soil texture / Chapter 3.2.3.3 --- pH and electrical conductivity / Chapter 3.2.3.4 --- Organic carbon / Chapter 3.2.3.5 --- Nitrogen / Chapter 3.2.3.6 --- Phosphorus / Chapter 3.2.3.7 --- Chloride / Chapter 3.2.3.8 --- Metals / Chapter 3.2.3.9 --- Foliage analysis / Chapter 3.3 --- Results and discussion --- p.75 / Chapter 3.3.1 --- Leachate --- p.75 / Chapter 3.3.1.1 --- Chemical properties / Chapter 3.3.1.2 --- Phytotoxicity / Chapter 3.3.2 --- Plant responses --- p.79 / Chapter 3.3.2.1 --- Growth / Chapter 3.3.2.2 --- Plant survival and health / Chapter 3.3.2.3 --- Tissue contents / Chapter 3.3.2.4 --- Incorporating the results of germination tests in leachate irrigation practice / Chapter 3.3.3 --- Soil --- p.101 / Chapter 3.3.3.1 --- Initial properties / Chapter 3.3.3.2 --- Soil reaction (pH) / Chapter 3.3.3.3 --- Nitrogen / Chapter 3.3.3.4 --- Phosphorus / Chapter 3.3.3.5 --- Conductivity / Chapter 3.3.3.6 --- Chloride / Chapter 3.3.3.7 --- Metals / Chapter 3.4 --- Conclusions --- p.119 / Chapter Chapter 4 --- Fate and distribution of N after soil application of landfill leachate / Chapter 4.1 --- Introduction --- p.121 / Chapter 4.1.1 --- The needs of external N supply in ecological restoration --- p.121 / Chapter 4.1.2 --- Objectives of study --- p.122 / Chapter 4.2 --- Materials and methods --- p.123 / Chapter 4.2.1 --- Leachate --- p.124 / Chapter 4.2.2 --- Soil column --- p.124 / Chapter 4.2.3 --- Plant selection and establishment --- p.127 / Chapter 4.2.3 --- Leachate application --- p.129 / Chapter 4.2.4 --- Post irrigation harvesting and analysis --- p.130 / Chapter 4.3 --- Results and discussion --- p.130 / Chapter 4.3.1 --- Leachate --- p.130 / Chapter 4.3.2 --- Plants --- p.132 / Chapter 4.3.2.1 --- Growth / Chapter 4.3.2.2 --- Tissue N contents / Chapter 4.3.3 --- Soil and soil percolate --- p.139 / Chapter 4.3.3.1 --- Percolate volume and soil moisture / Chapter 4.3.3.2 --- pH / Chapter 4.3.3.3 --- Electrical conductivity / Chapter 4.3.3.4 --- Nitrate / Chapter 4.3.3.5 --- Ammonium / Chapter 4.3.4 --- N balance of the soil-plant system --- p.160 / Chapter 4.3.4.1 --- Change in the N capital after leachate irrigation / Chapter 4.3.4.2 --- Leaching loss / Chapter 4.3.4.3 --- Unaccountable N loss / Chapter 4.4 --- Conclusions --- p.174 / Chapter Chapter 5 --- General conclusion / Chapter 5.1 --- Summary of findings --- p.176 / Chapter 5.2 --- Ecological consequence of increased and excess N deposition --- p.179 / Chapter 5.3 --- Research prospects --- p.182 / References --- p.185
5

Tai Mong Tsai outdoor educational and recreational camp

Chan, Shun-tim., 陳順甜. January 1997 (has links)
published_or_final_version / Architecture / Master / Master of Landscape Architecture

Page generated in 0.0726 seconds