• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 6
  • 2
  • Tagged with
  • 26
  • 26
  • 26
  • 9
  • 9
  • 8
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Étale equivalence relations and C*-algebras for iterated function systems

Korfanty, Emily Rose 22 December 2020 (has links)
There is a long history of interesting connections between topological dynamical systems and C*-algebras. Iterated function systems are an important topic in dynamics, but the diversity of these systems makes it challenging to develop an associated class of C*-algebras. Kajiwara and Watatani were the first to construct a C*-algebra from an iterated function system. They used an algebraic approach involving Cuntz-Pimsner algebras; however, when investigating properties such as ideal structure, they needed to assume that the functions in the system are the inverse branches of a continuous map. This excludes many famous examples, such as the standard functions used to construct the Siérpinski Gasket. In this thesis, we provide a construction of an inductive limit of étale equivalence relations for a broad class of affine iterated function systems, including the Siérpinski Gasket and its relatives, and consider the associated C*-algebras. This approach provides a more dynamical perspective, leading to interesting results that emphasize how properties of the dynamics appear in the C*-algebras. In particular, we show that the C*-algebras are isomorphic for conjugate systems, and find ideals related to the open set condition. In the case of the Siérpinski Gasket, we find explicit isomorphisms to subalgebras of the continuous functions from the attractor to a matrix algebra. Finally, we consider the K-theory of the inductive limit of these algebras. / Graduate
12

The Global Structure of Iterated Function Systems

Snyder, Jason Edward 05 1900 (has links)
I study sets of attractors and non-attractors of finite iterated function systems. I provide examples of compact sets which are attractors of iterated function systems as well as compact sets which are not attractors of any iterated function system. I show that the set of all attractors is a dense Fs set and the space of all non-attractors is a dense Gd set it the space of all non-empty compact subsets of a space X. I also investigate the small trans-finite inductive dimension of the space of all attractors of iterated function systems generated by similarity maps on [0,1].
13

A Study of the Behavior of Chaos Automata

Wilson, Deborah Ann Stoffer 14 November 2016 (has links)
No description available.
14

Multiscale Methods in Image Modelling and Image Processing

Alexander, Simon January 2005 (has links)
The field of modelling and processing of 'images' has fairly recently become important, even crucial, to areas of science, medicine, and engineering. The inevitable explosion of imaging modalities and approaches stemming from this fact has become a rich source of mathematical applications. <br /><br /> 'Imaging' is quite broad, and suffers somewhat from this broadness. The general question of 'what is an image?' or perhaps 'what is a natural image?' turns out to be difficult to address. To make real headway one may need to strongly constrain the class of images being considered, as will be done in part of this thesis. On the other hand there are general principles that can guide research in many areas. One such principle considered is the assertion that (classes of) images have multiscale relationships, whether at a pixel level, between features, or other variants. There are both practical (in terms of computational complexity) and more philosophical reasons (mimicking the human visual system, for example) that suggest looking at such methods. Looking at scaling relationships may also have the advantage of opening a problem up to many mathematical tools. <br /><br /> This thesis will detail two investigations into multiscale relationships, in quite different areas. One will involve Iterated Function Systems (IFS), and the other a stochastic approach to reconstruction of binary images (binary phase descriptions of porous media). The use of IFS in this context, which has often been called 'fractal image coding', has been primarily viewed as an image compression technique. We will re-visit this approach, proposing it as a more general tool. Some study of the implications of that idea will be presented, along with applications inferred by the results. In the area of reconstruction of binary porous media, a novel, multiscale, hierarchical annealing approach is proposed and investigated.
15

Multiscale Methods in Image Modelling and Image Processing

Alexander, Simon January 2005 (has links)
The field of modelling and processing of 'images' has fairly recently become important, even crucial, to areas of science, medicine, and engineering. The inevitable explosion of imaging modalities and approaches stemming from this fact has become a rich source of mathematical applications. <br /><br /> 'Imaging' is quite broad, and suffers somewhat from this broadness. The general question of 'what is an image?' or perhaps 'what is a natural image?' turns out to be difficult to address. To make real headway one may need to strongly constrain the class of images being considered, as will be done in part of this thesis. On the other hand there are general principles that can guide research in many areas. One such principle considered is the assertion that (classes of) images have multiscale relationships, whether at a pixel level, between features, or other variants. There are both practical (in terms of computational complexity) and more philosophical reasons (mimicking the human visual system, for example) that suggest looking at such methods. Looking at scaling relationships may also have the advantage of opening a problem up to many mathematical tools. <br /><br /> This thesis will detail two investigations into multiscale relationships, in quite different areas. One will involve Iterated Function Systems (IFS), and the other a stochastic approach to reconstruction of binary images (binary phase descriptions of porous media). The use of IFS in this context, which has often been called 'fractal image coding', has been primarily viewed as an image compression technique. We will re-visit this approach, proposing it as a more general tool. Some study of the implications of that idea will be presented, along with applications inferred by the results. In the area of reconstruction of binary porous media, a novel, multiscale, hierarchical annealing approach is proposed and investigated.
16

Conformal and Stochastic Non-Autonomous Dynamical Systems

Atnip, Jason 08 1900 (has links)
In this dissertation we focus on the application of thermodynamic formalism to non-autonomous and random dynamical systems. Specifically we use the thermodynamic formalism to investigate the dimension of various fractal constructions via the, now standard, technique of Bowen which he developed in his 1979 paper on quasi-Fuchsian groups. Bowen showed, roughly speaking, that the dimension of a fractal is equal to the zero of the relevant topological pressure function. We generalize the results of Rempe-Gillen and Urbanski on non-autonomous iterated function systems to the setting of non-autonomous graph directed Markov systems and then show that the Hausdorff dimension of the fractal limit set is equal to the zero of the associated pressure function provided the size of the alphabets at each time step do not grow too quickly. In trying to remove these growth restrictions, we present several other systems for which Bowen's formula holds, most notably ascending systems. We then use these various constructions to investigate the Hausdorff dimension of various subsets of the Julia set for different large classes of transcendental meromorphic functions of finite order which have been perturbed non-autonomously. In particular we find lower and upper bounds for the dimension of the subset of the Julia set whose points escape to infinity, and in many cases we find the exact dimension. While the upper bound was known previously in the autonomous case, the lower bound was not known in this setting, and all of these results are new in the non-autonomous setting. We also use transfer operator techniques to prove an almost sure invariance principle for random dynamical systems for which the thermodynamical formalism has been well established. In particular, we see that if a system exhibits a fiberwise spectral gap property and the base dynamical system is sufficiently well behaved, i.e. it exhibits an exponential decay of correlations, then the almost sure invariance principle holds. We then apply these results to uniformly expanding random systems like those studied by Mayer, Skorulski, and Urbanski and Denker and Gordin.
17

Hausdorff Dimension of Shrinking-Target Sets Under Non-Autonomous Systems

Lopez, Marco Antonio 08 1900 (has links)
For a dynamical system on a metric space a shrinking-target set consists of those points whose orbit hit a given ball of shrinking radius infinitely often. Historically such sets originate in Diophantine approximation, in which case they describe the set of well-approximable numbers. One aspect of such sets that is often studied is their Hausdorff dimension. We will show that an analogue of Bowen's dimension formula holds for such sets when they are generated by conformal non-autonomous iterated function systems satisfying some natural assumptions.
18

Directed graph iterated function systems

Boore, Graeme C. January 2011 (has links)
This thesis concerns an active research area within fractal geometry. In the first part, in Chapters 2 and 3, for directed graph iterated function systems (IFSs) defined on ℝ, we prove that a class of 2-vertex directed graph IFSs have attractors that cannot be the attractors of standard (1-vertex directed graph) IFSs, with or without separation conditions. We also calculate their exact Hausdorff measure. Thus we are able to identify a new class of attractors for which the exact Hausdorff measure is known. We give a constructive algorithm for calculating the set of gap lengths of any attractor as a finite union of cosets of finitely generated semigroups of positive real numbers. The generators of these semigroups are contracting similarity ratios of simple cycles in the directed graph. The algorithm works for any IFS defined on ℝ with no limit on the number of vertices in the directed graph, provided a separation condition holds. The second part, in Chapter 4, applies to directed graph IFSs defined on ℝⁿ . We obtain an explicit calculable value for the power law behaviour as r → 0⁺ , of the qth packing moment of μ[subscript(u)], the self-similar measure at a vertex u, for the non-lattice case, with a corresponding limit for the lattice case. We do this (i) for any q ∈ ℝ if the strong separation condition holds, (ii) for q ≥ 0 if the weaker open set condition holds and a specified non-negative matrix associated with the system is irreducible. In the non-lattice case this enables the rate of convergence of the packing L[superscript(q)]-spectrum of μ[subscript(u)] to be determined. We also show, for (ii) but allowing q ∈ ℝ, that the upper multifractal q box-dimension with respect to μ[subscript(u)], of the set consisting of all the intersections of the components of F[subscript(u)], is strictly less than the multifractal q Hausdorff dimension with respect to μ[subscript(u)] of F[subscript(u)].
19

The Dynamics of Semigroups of Contraction Similarities on the Plane

Stefano Silvestri (6983546) 16 October 2019 (has links)
<div>Given a parametrized family of Iterated Function System (IFS) we give sufficient conditions for a parameter on the boundary of the connectedness locus, M, to be accessible from the complement of M.</div><div>Moreover, we provide a few examples of such parameters and describe how they are connected to Misiurewicz parameter in the Mandelbrot set, i.e. the connectedness locus of the quadratic family z^2+c.<br></div>
20

Some New Methods For Improved Fractal Image Compression

Ramkumar, M 08 1900 (has links) (PDF)
No description available.

Page generated in 0.4805 seconds