• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • Tagged with
  • 17
  • 17
  • 17
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Robot visual servoing with iterative learning control

Jiang, Ping, Unbehauen, R. January 2002 (has links)
Yes / This paper presents an iterative learning scheme for vision guided robot trajectory tracking. At first, a stability criterion for designing iterative learning controller is proposed. It can be used for a system with initial resetting error. By using the criterion, one can convert the design problem into finding a positive definite discrete matrix kernel and a more general form of learning control can be obtained. Then, a three-dimensional (3-D) trajectory tracking system with a single static camera to realize robot movement imitation is presented based on this criterion.
12

A universal iterative learning stabilizer for a class of MIMO systems.

Jiang, Ping, Chen, H., Bamforth, C.A. January 2006 (has links)
No / Design of iterative learning control (ILC) often requires some prior knowledge about a system's control matrix. In some applications, such as uncalibrated visual servoing, this kind of knowledge may be unavailable so that a stable learning control cannot always be achieved. In this paper, a universal ILC is proposed for a class of multi-input multi-output (MIMO) uncertain nonlinear systems with no prior knowledge about the system control gain matrix. It consists of a gain matrix selector from the unmixing set and a learned compensator in a form of the positive definite discrete matrix kernel, corresponding to rough gain matrix probing and refined uncertainty compensating, respectively. Asymptotic convergence for a trajectory tracking within a finite time interval is achieved through repetitive tracking. Simulations and experiments of uncalibrated visual servoing are carried out in order to verify the validity of the proposed control method.
13

Nussbaum gain based iterative learning control for a class of multi-input multi-output nonlinear systems.

Jiang, Ping, Chen, H. January 2005 (has links)
Yes / An adaptive iterative learning control(ILC) approach is proposed for a class of multi-input multi-output (MIMO) uncertain nonlinear systems without prior knowledge about system control gain matrices. The Nussbaum-type gain and the positive definite discrete matrix kernel are proposed for dealing with selection of the unknown control gain and learning of the repeatable uncertainties, respectively. Asymptotic convergence for a trajectory tracking within a finite time interval is achieved through repetitive tracking. Simulations are carried out to show the validity of the proposed control method.
14

Iterative Evaluation and Control Methods for Disturbance Suppression on a High Precision Motion Servo

Thunberg, Claes, Kastensson, Klara January 2023 (has links)
Moore’s law states that the number of transistors in an Integrated Circuit (IC) doubles every two years. Ever-increasing performance in mask writing machinery is therefore required being the first step in the manufacturing process. Many factors affect the quality of the end product, with the motion control system playing an important role. This thesis analyzes the performance of the motion controller for the positioning system in a mask writer application. The target motion in the X-axis in the mask writer is by design highly repetitive and predictable. As of today a feedforward-feedback controller is used, tuned for low deviation during writing. In this thesis it is found that the motion control can be improved by exploiting the repetitive nature of the motion task. Two iterative methods are explored, Iterative Feedback Tuning (IFT) and Iterative Learning Control (ILC). IFT is implemented as a parameter optimizing method for the existing Proportional-Integral-Derivative (PID) controller. Given suboptimal initial parameters the algorithm converges to a global minimum using a cost function to minimize total deviation and constraints on the maximum deviation. With the optimized parameter settings an improvement of a 31 % decrease in total deviation is seen compared to the default setting. ILC is implemented as a replacement to the current controller in an exposure motion. With the use of saved data from previous iterations the control signal is updated and refined to better suit the target motion. ILC is a promising method within high precision motion control by virtue of not needing a model of the system and its ability to suppress reoccurring disturbances. The algorithm achieves an improvement of a 94% decrease in total deviation during writing compared to the current controller. However, with this implementation long term stability is not guaranteed. A stable implementation of the algorithm tested on a test rig achieves an improvement of a 79.8% decrease in deviation during writing compared to the current feedforward-feedback controller. Additionally, correlations between parameter values of the current feedback controller and servo characteristics are analyzed to aid in the manual tuning process. Tuning the PID controller for fast rise time decreases the total deviation during writing. The derivative gain in the controller should be high to decrease the overshoot caused by the aggressive controller. This will induce some oscillations into the system, however not at the cost of performance as a result of the smooth motion during writing.
15

Sensor Fusion and Control Applied to Industrial Manipulators

Axelsson, Patrik January 2014 (has links)
One of the main tasks for an industrial robot is to move the end-effector in a predefined path with a specified velocity and acceleration. Different applications have different requirements of the performance. For some applications it is essential that the tracking error is extremely small, whereas other applications require a time optimal tracking. Independent of the application, the controller is a crucial part of the robot system. The most common controller configuration uses only measurements of the motor angular positions and velocities, instead of the position and velocity of the end-effector. The development of new cost optimised robots has introduced unwanted flexibilities in the joints and the links. The consequence is that it is no longer possible to get the desired performance and robustness by only measuring the motor angular positions.  This thesis investigates if it is possible to estimate the end-effector position using Bayesian estimation methods for state estimation, here represented by the extended Kalman filter and the particle filter. The arm-side information is provided by an accelerometer mounted at the end-effector. The measurements consist of the motor angular positions and the acceleration of the end-effector. In a simulation study on a realistic flexible industrial robot, the angular position performance is shown to be close to the fundamental Cramér-Rao lower bound. The methods are also verified in experiments on an ABB IRB4600 robot, where the dynamic performance of the position for the end-effector is significantly improved. There is no significant difference in performance between the different methods. Instead, execution time, model complexities and implementation issues have to be considered when choosing the method. The estimation performance depends strongly on the tuning of the filters and the accuracy of the models that are used. Therefore, a method for estimating the process noise covariance matrix is proposed. Moreover, sampling methods are analysed and a low-complexity analytical solution for the continuous-time update in the Kalman filter, that does not involve oversampling, is proposed.  The thesis also investigates two types of control problems. First, the norm-optimal iterative learning control (ILC) algorithm for linear systems is extended to an estimation-based norm-optimal ILC algorithm where the controlled variables are not directly available as measurements. The algorithm can also be applied to non-linear systems. The objective function in the optimisation problem is modified to incorporate not only the mean value of the estimated variable, but also information about the uncertainty of the estimate. Second, H∞ controllers are designed and analysed on a linear four-mass flexible joint model. It is shown that the control performance can be increased, without adding new measurements, compared to previous controllers. Measuring the end-effector acceleration increases the control performance even more. A non-linear model has to be used to describe the behaviour of a real flexible joint. An H∞-synthesis method for control of a flexible joint, with non-linear spring characteristic, is therefore proposed. / En av de viktigaste uppgifterna för en industrirobot är att förflytta verktyget i en fördefinierad bana med en specificerad hastighet och acceleration. Exempel på användningsområden för en industrirobot är bland annat bågsvetsning eller limning. För dessa typer av applikationer är det viktigt att banföljningsfelet är extremt litet, men även hastighetsprofilen måste följas så att det till exempel inte appliceras för mycket eller för lite lim. Andra användningsområden kan vara punktsvetsning av bilkarosser och paketering av olika varor. För dess applikationer är banföljningen inte det viktiga, istället kan till exempel en tidsoptimal banföljning krävas eller att svängningarna vid en inbromsning minimeras. Oberoende av applikationen är regulatorn en avgörande del av robotsystemet. Den vanligaste regulatorkonfigurationen använder bara mätningar av motorernas vinkelpositioner och -hastigheter, istället för positionen och hastigheten för verktyget, som är det man egentligen vill styra.  En del av utvecklingsarbetet för nya generationers robotar är att reducera kostnaden men samtidigt förbättra prestandan. Ett sätt att minska kostnaden kan till exempel vara att minska dimensionerna på länkarna eller köpa in billigare växellådor. Den här utvecklingen av kostnadsoptimerade robotar har infört oönskade flexibiliteter i leder och länkar. Det är därför inte längre möjligt att få den önskade prestandan och robustheten genom att bara mäta motorernas vinkelpositioner och -hastigheter. Istället krävs det omfattande matematiska modeller som beskriver dessa oönskade flexibiliteter. Dessa modeller kräver mycket arbete att dels ta fram men även för att identifiera parametrarna. Det finns automatiska metoder för att beräkna modellparametrarna men oftast krävs det en manuell justering för att få bra prestanda.  Den här avhandlingen undersöker möjligheterna att beräkna verktygspositionen med hjälp av bayesianska metoder för tillståndsskattning. De bayesianska skattningsmetoderna beräknar tillstånden för ett system iterativt. Med hjälp av en matematisk modell över systemet predikteras vad tillståndet ska vara vid nästa tidpunkt. Efter att mätningar av systemet vid den nya tidpunkten har genomförts justeras skattningen med hjälp av dessa mätningar. De metoder som har använts i avhandlingen är det så kallade extended Kalman filtret samt partikelfiltret.  Informationen på armsidan av växellådan ges av en accelerometer som är monterad på verktyget. Med hjälp av accelerationen för verktyget och motorernas vinkelpositioner kan en skattning av verktygspositionen beräknas. I en simuleringsstudie för en realistisk vek robot har det visats att skattningsprestandan ligger nära den teoretiska undre gränsen, känd som Raooch mätstörningar som påverkar roboten. För att underlätta trimningen så har en metod för att skatta processbrusets kovariansmatris föreslagits. En annan viktig del som påverkar prestandan är modellerna som används i filtren. Modellerna för en industrirobot är vanligtvis framtagna i kontinuerlig tid medan filtren använder modeller i diskret tid. För att minska felen som uppkommer då de tidskontinuerliga modellerna överförs till diskret tid har olika samplingsmetoder studerats. Vanligtvis används enkla metoder för att diskretisera vilket innebär problem med prestanda och stabilitet. För att hantera dessa problem införs översampling vilket innebär att tidsuppdateringen sker med en mycket kortare sampeltid än vad mätuppdateringen gör. För att undvika översampling kan det motsvarande tidskontinuerliga filtret användas för att prediktera tillstånden vid nästa diskreta tidpunkt. En analytisk lösning med låg beräkningskomplexitet till detta problem har föreslagits.  Vidare innehåller avhandlingen två typer av reglerproblem relaterade till industrirobotar. För det första har den så kallade norm-optimala iterative learning control styrlagen utökats till att hantera fallet då en skattning av den önskade reglerstorheten används istället för en mätning. Med hjälp av skattningen av systemets tillståndsvektor kan metoden nu även användas till olinjära system vilket inte är fallet med standardformuleringen. Den föreslagna metoden utökar målfunktionen i optimeringsproblemet till att innehålla inte bara väntevärdet av den skattade reglerstorheten utan även skattningsfelets kovariansmatris. Det innebär att om skattningsfelet är stort vid en viss tidpunkt ska den skattade reglerstorheten vid den tidpunkten inte påverka resultatet mycket eftersom det finns en stor osäkerhet i var den sanna reglerstorheten befinner sig.  För det andra har design och analys av H∞-regulatorer för en linjär modell av en vek robotled, som beskrivs med fyra massor, genomförts. Det visar sig att reglerprestandan kan förbättras, utan att lägga till fler mätningar än motorns vinkelposition, jämfört med tidigare utvärderade regulatorer. Genom att mäta verktygets acceleration kan prestandan förbättras ännu mer. Modellen över leden är i själva verket olinjär. För att hantera detta har en H∞-syntesmetod föreslagits som kan hantera olinjäriteten i modellen. / Vinnova Excellence Center LINK-SIC
16

Robust Iterative Learning Control for Linear and Hybrid Systems with Applications to Automotive Control

Mishra, Kirti D. January 2020 (has links)
No description available.
17

Learning model predictive control with application to quadcopter trajectory tracking

Maji, Abhishek January 2020 (has links)
In thiswork, we develop a learning model predictive controller (LMPC) for energy-optimaltracking of periodic trajectories for a quadcopter. The main advantage of this controller isthat it is “reference-free”. Moreover, the controller is able to improve its performance overiterations by incorporating learning from the previous iterations. The proposed learningmodel predictive controller aims to learn the “best” energy-optimal trajectory over timeby learning a terminal constraint set and a terminal cost from the history data of previousiterations. We have shown howto recursively construct terminal constraint set and terminalcost as a convex hull and a convex piece-wise linear approximation of state and inputtrajectories of previous iterations, respectively. These steps allow us to formulate theonline planning problem for the controller as a convex optimization program, therebyavoiding the complex combinatorial optimization problems that alternative formulationsin the literature need to solve. The data-driven terminal constraint set and terminal costnot only ensure recursive feasibility and stability of LMPC but also guarantee convergenceto the neighbourhood of the optimal performance at steady state. Our LMPC formulationincludes linear time-varying system dynamics which is also learnt from stored state andinput trajectories of previous iterations.To show the performance of LMPC, a quadcopter trajectory learning problem in thevertical plane is simulated in MATLAB/SIMULINK. This particular trajectory learningproblem involves non-convex state constraints, which makes the resulting optimal controlproblem difficult to solve. A tangent cut method is implemented to approximate the nonconvexconstraints by convex ones, which allows the optimal control problem to be solvedby efficient convex optimization solvers. Simulation results illustrate the effectiveness ofthe proposed control strategy. / Vi utvecklar en lärande modell-prediktiv regulator för energi-optimalt följande av periodiskatrajektorier för en quadkopter. Den huvudsakliga fördelen med denna regulator äratt den är “referensfri”. Dessutom så klarar regulatorn att förbättra sin prestanda medtiden genom att inkorporera inlärning från föregående iterationer. Syftet med den föreslagnalärande modell-prediktiva regulatorn är att över en viss tid lära sig den “bästa”energioptimala trajektorian genom att lära sig den terminala bivillkorsmängden och denterminala kostnaden från historiskt data från tidigare iterationer. Vi har visat hur man kanrekursivt konstruera terminala bivillkorsmängder och terminala kostnader som konvexahöljen respektive konvexa styckvis linjära approximationer av tillstånds- och insignalstrajektoriernafrån tidigare iterationer. Dessa steg gör det möjligt att formulera onlineplaneringsproblemet för regulatorn som ett konvext optimeringsproblem och på så visundvika de komplexa kombinatoriska optimeringsproblemen som ofta krävs för alternativametoder som kan hittas andra publikationer. Den datadrivna terminala bivillkorsmängdenoch terminala kostnaden garanterar inte bara rekursiv tillåtenhet och stabilitet av LMPC,utan även konvergens till en omgivning av den optimala prestandan efter att ha uppnåttjämvikt. Vår LMPC-formulering innehåller linjär och tidsvarierande systemdynamik, somockså lärs från lagrade tillstånds- och insignalstrajektorier från tidigare iterationer.För att visa prestandan av LMPC så simuleras iMATLAB/SIMULINK ett problem ominlärning av quadkopter-trajektorier i det vertikala planet. Just det trajektorieinlärningsproblemetinnehåller icke-konvexa tillståndsbivillkor, vilket gör det resulterande optimeringsproblemetsvårt att lösa. En tangentsnitt-metod är implementerad för att approximera deicke-konvexa bivillkoren med hjälp av konvexa bivillkor, vilket möjliggör lösningen avdet optimala regleringsproblemet med effektiva lösare för konvexa optimeringsproblem.Simuleringsresultaten visar effektivitet av den föreslagna regleringsmetoden.

Page generated in 0.1477 seconds