Spelling suggestions: "subject:"invariant"" "subject:"l'invariant""
1 |
The A-infinity Algebra of a Curve and the J-invariantFisette, Robert, Fisette, Robert January 2012 (has links)
We choose a generator G of the derived category of coherent sheaves on a smooth
curve X of genus g which corresponds to a choice of g distinguished points P1, . . . , Pg on X.
We compute the Hochschild cohomology of the algebra B = Ext (G,G) in certain internal
degrees relevant to extending the associative algebra structure on B to an A1-structure, which
demonstrates that A1-structures on B are finitely determined for curves of arbitrary genus.
When the curve is taken over C and g = 1, we amend an explicit A1-structure on B
computed by Polishchuk so that the higher products m6 and m8 become Hochschild cocycles.
We use the cohomology classes of m6 and m8 to recover the j-invariant of the curve. When
g 2, we use Massey products in Db(X) to show that in the A1-structure on B, m3 is
homotopic to 0 if and only if X is hyperelliptic and P1, . . . , Pg are chosen to be Weierstrass
points.
iv
|
2 |
Tropical orbit spaces and moduli spaces of tropical curvesHerold, Matthias 25 January 2011 (has links) (PDF)
Un principal résultat de la thèse est une preuve conceptionnelle du fait que le nombre pondéré de courbes tropicales de degré et genre donnés qui passent par le bon nombre de points en position générale dans $\RR^2$ (resp., qui passent par le bon nombre de points en position générale dans $ \RR^r $ et représentent un point fixé dans l'espace de modules de courbes tropicales abstraites de genre g ) ne dépend pas du choix de points. Un autre principal résultat est un nouveau théorème de correspondance entre les cycles tropicaux plans et les courbes algébriques elliptiques planes.
|
3 |
Problèmes autour de courbes élliptiques et modulaires / Topics in elliptic and modular curvesSha, Min 27 September 2013 (has links)
Cette thèse se divise en deux parties. La première est consacrée aux points entiers sur les courbes modulaires, et l'autre se concentre sur les courbes elliptiques à couplages.Dans la première partie, nous donnons quelques majorations effectives de la hauteur des j-invariants des points entiers sur les courbes modulaires quelconques associées aux sous-groupes de congruence sur les corps de nombres quelconques en supposant que le nombre des pointes est au moins 3. De plus, dans le cas d'un groupe de Cartan non-déployé nous fournissons de meilleures bornes. Comme application, nous obtenons des résultats similaires pour certaines courbes modulaires avec moins de 3 pointes.Dans la deuxième partie, nous donnons une nouvelle majoration du nombre de classes d'isogénie de courbes elliptiques ordinaires à couplages. Nous analysons également la méthode de Cocks-Pinch pour confirmer certaines de ses propriétés communément conjecturées. Par ailleurs, nous présentons la première analyse heuristique connue qui suggère que toute construction efficace de courbes elliptiques à couplages peut engendrer efficacement de telles courbes sur tout corps à couplages. Enfin, quelques données numériques allant dans ce sens sont données. / This thesis is divided into two parts. One is devoted to integral points on modular curves, and the other concerns pairing-friendly elliptic curves. In the first part, we give some effective upper bounds for the $j$-invariant of integral points on arbitrary modular curves corresponding to congruence subgroups over arbitrary number fields assuming that the number of cusps is not less than 3. Especially, in the non-split Cartan case we provide much better bounds. As an application, we get similar results for certain modular curves with less than three cusps. In the second part, a new heuristic upper bound for the number of isogeny classes of ordinary pairing-friendly elliptic curves is given. We also heuristically analyze the Cocks-Pinch method to confirm some of its general consensuses. Especially, we present the first known heuristic which suggests that any efficient construction of pairing-friendly elliptic curves can efficiently generate such curves over pairing-friendly fields. Finally, some numerical evidence is given.
|
4 |
Problèmes autour de courbes élliptiques et modulairesSha, Min 27 September 2013 (has links) (PDF)
Cette thèse se divise en deux parties. La première est consacrée aux points entiers sur les courbes modulaires, et l'autre se concentre sur les courbes elliptiques à couplages.Dans la première partie, nous donnons quelques majorations effectives de la hauteur des j-invariants des points entiers sur les courbes modulaires quelconques associées aux sous-groupes de congruence sur les corps de nombres quelconques en supposant que le nombre des pointes est au moins 3. De plus, dans le cas d'un groupe de Cartan non-déployé nous fournissons de meilleures bornes. Comme application, nous obtenons des résultats similaires pour certaines courbes modulaires avec moins de 3 pointes.Dans la deuxième partie, nous donnons une nouvelle majoration du nombre de classes d'isogénie de courbes elliptiques ordinaires à couplages. Nous analysons également la méthode de Cocks-Pinch pour confirmer certaines de ses propriétés communément conjecturées. Par ailleurs, nous présentons la première analyse heuristique connue qui suggère que toute construction efficace de courbes elliptiques à couplages peut engendrer efficacement de telles courbes sur tout corps à couplages. Enfin, quelques données numériques allant dans ce sens sont données.
|
Page generated in 0.0365 seconds