Spelling suggestions: "subject:"jacobi process"" "subject:"iacobi process""
1 |
Uncertain Growth Options and Asset PricingBrian G Hogle (11059854) 22 July 2021 (has links)
<div>We develop a growth option and asset pricing model that incorporates uncertain cash flow volatility by way of a bounded quadratic diffusion. Using different measures of risk uncertainty, we study the combined effects of risk and its associated uncertainty on project values, firm investment, and the resulting returns. Uncertain cash flow volatility is modeled by a Jacobi process, and our main interest is the effect of the max uncertainty arising from the diffusion term. For comparison, we also model the volatility by a CIR process. In regards to the Jacobi process, we consider upper and lower bounds on cash flow volatility as measures of uncertainty. For the max uncertainty and upper bound, we find that higher uncertainty leads to less investment, higher returns, and lower project values. In the case of the lower bound, we find that higher uncertainty leads to more investment, lower returns, and higher project values. Comparatively, using a CIR process in place of the Jacobi process yields differences in returns and growth option values, showing the importance of the diffusion term in the volatility process. Finally, we have reduced the computational complexity of the simulation. This allows the user to generate long time series and run cross sectional regressions with many firms.</div>
|
2 |
Calcul stochastique commutatif et non-commutatif : théorie et application / Commutative and noncommutarive stochastic calculus : theory and applicationsHamdi, Tarek 07 December 2013 (has links)
Mon travail de thèse est composé de deux parties bien distinctes, la première partie est consacrée à l’analysestochastique en temps discret des marches aléatoires obtuses quant à la deuxième partie, elle est liée aux probabili-tés libres. Dans la première partie, on donne une construction des intégrales stochastiques itérées par rapport à unefamille de martingales normales d-dimentionelles. Celle-ci permet d’étudier la propriété de représentation chaotiqueen temps discret et mène à une construction des opérateurs gradient et divergence sur les chaos de Wiener correspon-dant. [...] d’une EDP non linéaire alors que la deuxième est de nature combinatoire.Dans un second temps, on a revisité la description de la mesure spectrale de la partie radiale du mouvement Browniensur Gl(d,C) quand d ! +¥. Biane a démontré que cette mesure est absolument continue par rapport à la mesurede Lebesgue et que son support est compact dans R+. Notre contribution consiste à redémontrer le résultat de Bianeen partant d’une représentation intégrale de la suite des moments sur une courbe de Jordon autour de l’origine etmoyennant des outils simples de l’analyse réelle et complexe. / My PhD work is composed of two parts, the first part is dedicated to the discrete-time stochastic analysis for obtuse random walks as to the second part, it is linked to free probability. In the first part, we present a construction of the stochastic integral of predictable square-integrable processes and the associated multiple stochastic integrals ofsymmetric functions on Nn (n_1), with respect to a normal martingale.[...] In a second step, we revisited thedescription of the marginal distribution of the Brownian motion on the large-size complex linear group. Precisely, let (Z(d)t )t_0 be a Brownian motion on GL(d,C) and consider nt the limit as d !¥ of the distribution of (Z(d)t/d)⋆Z(d)t/d with respect to E×tr.
|
Page generated in 0.0527 seconds