Spelling suggestions: "subject:"jacobian conjecture"" "subject:"jacobiana conjecture""
1 |
Combinatorial Approaches To The Jacobian ConjectureOmar, Mohamed January 2007 (has links)
The Jacobian Conjecture is a long-standing open problem in algebraic geometry. Though the problem is inherently algebraic, it crops up in fields throughout mathematics including perturbation theory, quantum field theory and combinatorics. This thesis is a unified treatment of the combinatorial approaches toward resolving the conjecture, particularly investigating the work done by Wright and Singer. Along with surveying their contributions, we present new proofs of their theorems and motivate their constructions. We also resolve the Symmetric Cubic Linear case, and present new conjectures whose resolution would prove the Jacobian Conjecture to be true.
|
2 |
Combinatorial Approaches To The Jacobian ConjectureOmar, Mohamed January 2007 (has links)
The Jacobian Conjecture is a long-standing open problem in algebraic geometry. Though the problem is inherently algebraic, it crops up in fields throughout mathematics including perturbation theory, quantum field theory and combinatorics. This thesis is a unified treatment of the combinatorial approaches toward resolving the conjecture, particularly investigating the work done by Wright and Singer. Along with surveying their contributions, we present new proofs of their theorems and motivate their constructions. We also resolve the Symmetric Cubic Linear case, and present new conjectures whose resolution would prove the Jacobian Conjecture to be true.
|
3 |
A short proof of Jung’s theorem / A short proof of Jung’s theoremGuccione, J.A., Guccione, J.J., Valqui, C. 25 September 2017 (has links)
We give a short and elementary proof of Jung’s theorem, which states that for a field K of characteristic zero the automorphisms of K[x, y] are generated by elementary automorphisms and linear automorphisms. / Presentaremos una prueba corta y elemental del teorema de Jung. Este teorema establece que para un cuerpo K de caracterstica cero los automor smos de K[x; y] son generados por automorsmos lineales y los llamados elementales.
|
4 |
Etude de certains ensembles singuliers associés à une application polynomiale / Some singular sets associated to a polynomial mapsNguyen thi bich, Thuy 30 September 2013 (has links)
Ce travail comporte deux parties dont la première concerne l'ensemble asymptotique $S_F$ d'une application polynomiale $F: C^n to C^n$. Dans les année 90s, Jelonek a montré que cet ensemble est une variété algébrique complexe singulière de dimension (complexe) $n-1$. Nous donnons une méthode, appelée {it méthode des fa{c c}ons}, pour stratifier cet ensemble. Nous obtenons une stratification de Thom-Mather. Par ailleurs, il existe une stratification de Whitney de $S_F$ telle que l'ensemble des fa{c c}ons possibles soit constant sur chaque strate. En utilisant les fa{c c}ons, nous donnons un algorithme pour expliciter l'ensemble asymptotique d'une application quadratique dominante en trois variables. Nous obtenons aussi une liste des ensembles asymptotiques possibles dans ce cas. La deuxième partie concerne l'ensemble $V_F$ : En 2010, Anna et Guillaume Valette ont construit une pseudo-variété réelle $V_F subset R^{2n + p}$, où $p > 0$, associée à une application polynomiale $F: C^n to C^n$. Dans le cas $n = 2$, ils ont prouvé que si $F$ est une application polynomiale de déterminant jacobien partout non nul, alors $F$ n'est pas propre si et seulement si l'homologie d'intersection de $V_F$ n'est pas triviale en dimension 2. Nous donnons une généralisation de ce résultat, dans le cas d'une application polynomiale $F : C^n to C^n$ de jacobien partout non nul. Nous donnons aussi une méthode pour stratifier l'ensemble $V_F$. Comme applications, nous obtenons des stratifications de l'ensemble des valeurs critiques asymptotiques de $F$ et de l'ensemble des points de bifurcation de $F$. / There are two parts in the present work. The first part concerns the asymptotic set of a polynomial mapping $F: C^n to C^n$. In the 90s, Zbigniew Jelonek showed that this set is a $(n-1)$ - (complex) dimensional singular variety. We give a method, called {it m'ethode des fa{c c}ons}, for stratifying this set. We obtain a Thom-Mather stratification. Moreover, there exists a Whitney stratification such that the set of possible fa{c c}ons is constant on every stratum. By using the fa{c c}ons, we give an algorithm for expliciting the asymptotic sets of a dominant quadratic polynomial mapping in three variables. As a result, we have a complete list of the asymptotic sets in this case. The second part concerns the set called Valette set $V_F$. In 2010, Anna and Guillaume Valette constructed a real pseudomanifold $V_F subset R^{2n + p}$, where $p > 0$, associated to a polynomial mapping $F: C^n to C^n$. In the case $n = 2$, they proved that if $F$ is a polynomial mapping with nowhere vanishing Jacobian, then $F$ is not proper if and only if the homology (or intersection homology) of $V_F$ is not trivial in dimension 2. We give a generalization of this result, in the case of a polynomial mapping $F : C^n to C^n$ with nowhere vanishing Jacobian. We give also a method for stratifying the set $V_F$. As applications, we have the stratifications of the set of asymptotic critical values of $F$ and the set of bifurcation points of $F$.
|
5 |
Injetividade global para aplicações entre espaços euclideanos / Global injectivity for applications between euclidean spacesRibeiro, Yuri Cândido da Silva 19 November 2007 (has links)
Neste texto é feita uma discussão sobre alguns resultados que fornecem condições suficientes para que um difeomorfismo local, do espaço euclideano n-dimensional nele próprio, seja injetivo. Dentro deste cenário, são exploradas as contribuições destes resultados na tentativa de solucionar conhecidas conjecturas no meio científico como a Conjectura Jacobiana e a Conjectura de Ponto Fixo. Do ponto de vista dinâmico, existem relações entre injetividade global e estabilidade assintótica global. Neste sentido, os resultados também são contextualizados com respeito a importantes conjecturas de estabilidade assintótica: Conjectura de Markus-Yamabe e o Problema de LaSalle / We present some results which give suficient conditions for a local diffeomorphism from the n-dimensional Euclidean space into itself be globally injective. Within this context, we consider some partial results addressed to solve the well known Fixed Point Conjecture and Jacobian Conjecture. From the dynamical point of view, there are connections between global injectivity and global asymptotic stability. In this way, we present a solution of the Markus-Yamabe Conjecture and of the LaSalle Problem
|
6 |
Injetividade global para aplicações entre espaços euclideanos / Global injectivity for applications between euclidean spacesYuri Cândido da Silva Ribeiro 19 November 2007 (has links)
Neste texto é feita uma discussão sobre alguns resultados que fornecem condições suficientes para que um difeomorfismo local, do espaço euclideano n-dimensional nele próprio, seja injetivo. Dentro deste cenário, são exploradas as contribuições destes resultados na tentativa de solucionar conhecidas conjecturas no meio científico como a Conjectura Jacobiana e a Conjectura de Ponto Fixo. Do ponto de vista dinâmico, existem relações entre injetividade global e estabilidade assintótica global. Neste sentido, os resultados também são contextualizados com respeito a importantes conjecturas de estabilidade assintótica: Conjectura de Markus-Yamabe e o Problema de LaSalle / We present some results which give suficient conditions for a local diffeomorphism from the n-dimensional Euclidean space into itself be globally injective. Within this context, we consider some partial results addressed to solve the well known Fixed Point Conjecture and Jacobian Conjecture. From the dynamical point of view, there are connections between global injectivity and global asymptotic stability. In this way, we present a solution of the Markus-Yamabe Conjecture and of the LaSalle Problem
|
7 |
Uma condição de injetividade e a estabilidade assintótica global no plano / A injectividade condition and the global asymptotic estability on the planeSOUZA, Wender José de 29 March 2010 (has links)
Made available in DSpace on 2014-07-29T16:02:15Z (GMT). No. of bitstreams: 1
Dissertacao Wender J de Souza.pdf: 1008440 bytes, checksum: b2d3405f265353a21b9eaaad1c91d71f (MD5)
Previous issue date: 2010-03-29 / In this work we are interested in the solution of the following problem: Let Y = ( f ,g)
be a vector field of class C1 in R2. Suppose that (x, y) = (0,0) is a singular point
of Y and assume that for any q ∈ R2, the eigenvalues of DY have negative real part,
this is, det(DY) > 0 and tr(DY) < 0. Then, the solution (x, y) = (0,0) of Y is globally
asymptotically stable.
To this end, we show that this problema is equivalent to the following: Let Y : R2 →R2
be a C1 vector field. If det(DY) > 0 and tr(DY) < 0, then Y is globally injective. This
equivalence was proved by C. Olech [1].
So we show the injectivity of the vector field Y under the conditions det(DY) > 0 and
tr(DY)<0. In fact, we present a more stronger result, which was obtained by C. Gutierrez
and can be found in [4]. This result is given by: Any planar vector field X of class C2
satisfying the r-eigenvalue condition for some r ∈ [0,¥) is injective. / Neste trabalho, estamos interessados em estudar a solução do seguinte problema: Seja
Y = ( f ,g) um campo de vetores, de classe C1, em R2. Suponha que (x, y) = (0,0) é um
ponto singular de Y e suponha que, para todo q ∈ R2, os autovalores de DY tem parte
real negativa, isto é, det(DY) > 0 e tr(DY) < 0. Então, a solução (x, y) = (0,0) de Y é
globalmente assintoticamente estável.
Para este fim, mostramos que este problema é equivalente ao seguinte: Seja Y : R2 →R2
uma campo de vetores de classe C1. Se det(DY) > 0 e tr(DY) < 0, então Y é globalmente
injetora. Esta equivalência foi demonstrada por C. Olech em [1].
Desta forma, a estratégia é estudar a injetividade do campo Y sob as condições det(DY)>
0 e tr(DY) < 0. Na verdade, apresentamos um resultado um pouco mais forte, o qual foi
obtido por C. Gutierrez e pode ser encontrado em [4]. Este resultado é dado por: Qualquer
campo de vetores X : R2 →R2 de classe C2 satisfazendo a condição de r-autovalor, para
algum r ∈ [0,¥), é injetora.
|
Page generated in 0.0659 seconds