• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical Study of Liquid Fuel Atomization, Evaporation and Combustion / 液体燃料の微粒化,蒸発および燃焼に関する数値解析

WEN, Jian 24 January 2022 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23614号 / 工博第4935号 / 新制||工||1771(附属図書館) / 京都大学大学院工学研究科機械理工学専攻 / (主査)教授 黒瀬 良一, 教授 花崎 秀史, 教授 岩井 裕 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
2

A Ghost Fluid Method for Modelling Liquid Jet Atomization

Kiran, S January 2017 (has links) (PDF)
Liquid jet atomisation has a wide variety of application in areas such as injectors in automobile and launch vehicle combustors, spray painting, ink jet printing etc. Understanding physical mechanisms involved in the primary regime of atomisation in combustors is extremely challenging due to the lack of experimental techniques that can reliably provide measurements of gas and liquid velocity fields in this region. Experimental studies have so far been mostly restricted to conditions at atmospheric conditions rather than technically relevant operating pressures. We present a computational fluid dynamics based modelling approach that can capture the evolution of the flow field in the dense primary atomization region of the spray as part of the present thesis work. A fully compressible 3D flow solver is coupled with an interface tracking solver based on level set method. A generalised mathematical formulation for thermodynamic models is implemented in flow solver enabling easy switching between various equations of states. Solvers are parallelised to run on large number of processors and are shown to have good scalability. A modification to the level set method which greatly reduces mass conservation inaccuracies when compared with existing state-of-art baseline schemes has been developed during this work. The Ghost uid Method is used for applying matching conditions at the Interface. The liquid and gas phases are modelled using the perfect gas and Tait equations of state respectively. Several validation studies have been carried out to ensure quantitative accuracy of the solver implemented. Results from canonical Rayleigh Taylor instability simulations shows good agreement with reported results in literature. Finally, results for unsteady evolution of a water-air jet at a liquid to gas density ratio of 10 are shown. Physical mechanisms causing the initial droplet formation are discussed in detail. Droplet feedback is identified as one of the important mechanisms in triggering liquid core instabilities. Comparisons between droplet size distributions obtained from computations are carried out. Vorticity dynamics is used to understand hole and ligament formation from liquid core. Effect of numerical droplets on the simulation results is also looked at in detail.
3

Air-Assited Atomization Strategies For High Viscosity Fuels

Mohan, Avulapati Madan 08 1900 (has links) (PDF)
Atomization of fuel is an important pre-requisite for efficient combustion in devices such as gas turbines, liquid propellant rocket engines, internal combustion engines and incinerators. The overall objective of the present work is to explore air-assisted atomization strategies for high viscosity fuels and liquids. Air-assisted atomization is a twin-fluid atomization method in which energy of the gas is used to assist the atomization of liquids. Broadly, three categories of air-assisted injection, i.e., effervescent, impinging jet and pre-filming air-blast are studied. Laser-based diagnostics are used to characterize the spray structure in terms of cone angle, penetration and drop size distribution. A backlit direct imaging method is used to study the macroscopic spray characteristics such as spray structure and spray cone angle while the microscopic characteristics are measured using the Particle/droplet imaging analysis (PDIA) technique. Effervescent atomization is a technique in which a small amount of gas is injected into the liquid at high pressure in the form of bubbles. Upon injection, the two-phase mixture expands rapidly and shatters the liquid into droplets and ligaments. Effervescent spray characteristics of viscous fuels such as Jatropha and Pongamia pure plant oils and diesel are studied. Measurements are made at various gas-to-liquid ratios (GLRs) and injection pressures. A Sauter Mean Diameter (SMD) of the order of 20 µm is achieved at an injection pressure of 10 bar and GLR of 0.2 with viscous fuels. An image-based method is proposed and applied to evaluate the unsteadiness in the spray. A map indicating steady/unsteady regime of operation has been generated. An optically accessible injector tip is developed which has enabled visualization of the two-phase flow structure inside the exit orifice of the atomizer. An important contribution of the present work is the correlation of the two-phase flow regime in the orifice with the external spray structure. For viscous fuels, the spray is observed to be steady only in the annular two-phase flow regime. Unexpanded gas bubbles observed in the liquid core even at an injection pressure of 10 bar indicate that the bubbly flow regime may not be beneficial for high viscosity oils. A novel method of external mixing twin-fluid atomization is developed. In this method, two identical liquid jets impinging at an angle are atomized using a gas jet. The effect of liquid viscosity (1 cP to 39 cP) and surface tension (22 mN/m to 72 mN/m) on this mode of atomization is studied by using water-glycerol and water-ethanol mixtures, respectively. An SMD of the order of 40 µm is achieved for a viscosity of 39 cP at a GLR of 0.13 at a liquid pressure of 8 bar and gas pressure of 5 bar. It is observed that the effect of liquid properties is minimal at high GLRs where the liquid jets are broken before the impingement as in the prompt atomization mode. Finally, a pre-filming air-blast technique is explored for transient spray applications. An SMD of 22 µm is obtained with diesel at liquid and gas pressures as low as 10 bar and 8.5 bar, respectively. With this technique, an SMD of 44 µm is achieved for Jatropha oil having a viscosity 10 times higher than that of diesel.
4

Atomization Characteristics of Camelina and Jatropha-Derived Drop-in Aviation Biofuels

Vankeswaram, Sai Krishna January 2015 (has links)
Biofuels in civil aviation is actively studied in recent years to identify potential alternative jet fuels to meet stringent environmental regulations imposed to tackle degraded air quality caused by fossil fuel combustion. In this context, the aviation industry prefers to develop ‘drop-in’ fuels which may not require substantial modifications in existing jet engine technologies. The thesis aims at evaluating the atomization characteristics of camelina- and jatropha-derived drop-in biofuels discharging from simplex swirl atomizer used in aircraft gas turbine engines. The test fuels are characterized in detail and all fuels meet current ASTM D7566 specifications. The experiments are conducted by discharging fuel spray into quiescent atmospheric air in a fuel spray booth to obtain spray characteristics such as fuel discharge behaviour, spray cone angle, breakup behaviour of swirling fuel sheet and spray drop size distribution. The characteristics of sheet breakup are deduced from the captured images of biofuel sprays and the measurements of spray droplet size distribution are obtained using Spraytec (laser-diffraction instrument). A systematic comparison is made between the biofuel sprays and the 100% Jet A-1 (conventional aviation kerosene) sprays to evaluate the drop-in feature of the biofuels. All the measured spray characteristics of the biofuel sprays follow the Jet A-1 both in qualitative and quantitative terms which ensure the drop-in nature of the tested biofuels. The minor differences observed in the comparison of the quantitative spray measurements are attributed to the variation in the fuel properties. This claim is supported using the predictions obtained from the liquid film breakup model and the empirical correlation reported in the literature for the determination of sheet breakup characteristics and mean drop size for sprays discharging from simplex swirl atomizers.
5

EFFECT OF FLOW PARAMETERS OF WATER AND AIR ATOMIZED SPRAYS ON COOLING INTENSITY OF HOT SURFACES / EFFECT OF FLOW PARAMETERS OF WATER AND AIR ATOMIZED SPRAYS ON COOLING INTENSITY OF HOT SURFACES

Boháček, Jan January 2011 (has links)
Práce komplexně popisuje vodní a vodovzdušné chlazení pomocí metod CFD (Computational Fluid Dynamics) konkrétně s využitím software ANSYS FLUENT. Skládá se ze dvou hlavních částí, z nichž první se zabývá numerickým popisem jediné vodní kapky a druhá popisem směsí kapek představující paprsek válcové a ploché trysky. Je založena převážně na vícefázových modelech proudění a vlastních uživatelsky definovaných funkcí (User Defined Functions, UDF) představujících stěžejní část práce. Uvedené výpočtové modely jsou ve většině případů verifikovány pomocí experimentálních dat nebo jiných numerických modelů. V první části práce jsou teoreticky postupně rozebrány všechny tři použité vícefázové modely proudění. První z nich, Volume Of Fluid model (VOF), byl použit pro modelování jediné kapky (mikromodel). Zatímco zbývající dva, Euler-Euler model a Euler-Lagrange model, byly aplikovány v modelu celého paprsku trysky (makromodel). Mikromodel popisuje dynamiku volného pádu vodní kapky. Pro malé průměry kapek (~100µm) standardní model povrchového napětí (Continuum Surface Force, CSF) způsoboval tzv. parazitní proudy. Z toho důvodu je v práci rozebrána problematika výpočtu normál, křivostí volných povrchů a povrchového napětí jako zdroje objemových sil v pohybových rovnicích. Makromodel se zabývá studiem dynamiky celého paprsku tj. oblastí od ústí trysky po dopad na horký povrch, bere v úvahu kompletní geometrii, tzn. např. podpůrné válečky, bramu, spodní část krystalizátoru apod. V práci je rozebrána 2D simulace dopadu paprsku válcové trysky pomocí VOF modelu Euler-Lagrange modelu na horký povrch. Pro případ s VOF modelem byl navržen model blánového varu. Euler-Euler model a Euler-Lagrange model byly využity pro simulaci paprsku ploché trysky horizontálně ostřikující horkou bramu přímo pod krystalizátorem nad první řadou válečků. Pro Euler-Euler model byl navržen model sekundárního rozpadu paprsku založený na teorii nejstabilnější vlnové délky (Blob jet model). Jelikož diskrétní Lagrangeovy částice tvořily v určitých místech spíše kontinuální fázi, byl navržen a otestován model pro konverzi těchto částic do VOF.

Page generated in 0.0868 seconds