• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 7
  • 5
  • 3
  • 1
  • Tagged with
  • 63
  • 63
  • 27
  • 13
  • 12
  • 10
  • 10
  • 10
  • 9
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

EXPERIMENTAL INVESTIGATION OF COMPOSITE MATERIAL EROSION CHARACTERISTICS UNDER CONDITIONS ENCOUNTERED IN TURBOFAN ENGINES

DRENSKY, GEORGE K. 02 July 2007 (has links)
No description available.
32

Evaluation of the Impact of Product Detail on the Accuracy of Cost Estimates

Divelbiss, David L. January 2005 (has links)
No description available.
33

Using Neural Networks with Limited Data to Estimate Manufacturing Cost

Dowler, John D. 29 July 2008 (has links)
No description available.
34

A Predictive Methodology for Soft Impact Damage in Jet Engines Incorporating Hybrid Composite Structures

Siddens, Aaron Jeffrey 03 May 2012 (has links)
This work presents a detailed predictive modeling methodology for comprehensive crashworthiness analysis of advanced jet engine forward sections, containing hybrid and composite structures, when subjected to soft impact. Bird strike onto the fan assembly is chosen as the impact event to be studied. The aim is to develop a numerical methodology capable of accurately capturing the full range of multifaceted damage in hybrid and composite structures as they evolve throughout the forward section of a propulsion system. Effective strategies are developed within an explicit finite element framework for modeling a bird, an engine forward section, intra-ply and inter-ply composite damage, and hybrid structural failure. The accuracy of each approach and their numerical modeling considerations are thoroughly investigated. These techniques are then combined to form the full crashworthiness methodology. It is demonstrated that the complete methodology effectively captures progressive hybrid fan blade fracture, leading edge de-bonding, composite casing delamination, and other significant progressive damage effects caused by direct impact and subsequent engine component interactions. The full damage prognosis capabilities demonstrated by this approach encompass aspects which have remained mainly unaddressed in soft impact analysis. A methodology for assessing the complete extent of impact damage for advanced structural engine designs represents a breakthrough that can contribute greatly to the rapid development of these systems in the future. / Master of Science
35

Réduction de vibrations de structure complexe par shunts piézoélectriques : application aux turbomachines / Optimization of shunted piezoelectric patches for vibration reduction of complex structures : application to a turbojet fan blade

Sénéchal, Aurélien 16 September 2011 (has links)
L’objet de cette thèse est d’étudier différents dispositifs d’amortissement de vibrations en basses fréquences des aubes de rotor de soufflante ("fan") d’un turboréacteur. Les solutions étudiées utilisent des pastilles piézoélectriques, liées à l’aube et connectées à un circuit électrique passif ou semi-passif. Dans la première partie, il s’agit de mettre en pratique le modèle électromécanique développé dans la thèse de Julien Ducarne, puis de l’étendre au cas tridimensionnel par l’utilisation de la méthode des éléments finis. Ce modèle de comportement prend en compte le couplage entre une structure mécanique quelconque et des pastilles piézoélectriques planes ou courbes. Par la suite, un modèle réduit à faible nombre de degrés de liberté est construit, ce qui permet après résolution de prédire l’efficacité des dispositifs amortissants. Deux techniques, nommées "shunt" et "switch" sont appliquées au cas d’une aube fan. La première consiste à utiliser un circuit électrique résistif ou résonant. La seconde, encore à l’état de recherche, comporte un circuit muni d’un interrupteur synchronisé aux oscillations de la structure, ce qui produit un amortissement analogue à celui d’un frottement sec. La modélisation et l’optimisation électrique de ces circuits, issus de différents travaux antérieurs, ne font l’objet que d’un rappel dans ce mémoire. Une procédure d’optimisation est développée pour pouvoir trouver les géométries et les emplacements des pastilles qui maximisent le couplage électromécanique. Deux algorithmes différents (recuit simulé et recherche avec liste taboue) sont utilisés et mis en interaction avec les outils de calcul éléments finis pour trouver des solutions optimisées. Afin de valider sur un cas industriel l’ensemble des travaux sur les dispositifs piézoélectriques, une campagne d’essai est menée sur une aube fan de CFM56-7b. Les niveaux d’atténuation mesurés et ceux prévus par le modèle sont ensuite comparés. La seconde partie est consacrée à l’évaluation de l’effet des nonlinéarités géométriques sur la dynamique d’une structure tournante. Initialement prévue pour être intégrée à la partie shunt piézoélectrique, ceci afin de pouvoir estimer l’efficacité de ce dernier lorsque la structure tourne et vibre en grande amplitude, l’étude n’a pas été poursuivie et constitue une partie sans lien avec les techniques de réduction de vibrations. Néanmoins, les résultats obtenus en 1D, ainsi que la méthode de prise en compte des nonlinéarités dans le cas 3D viennent compléter et enrichir les différentes études actuelles menées sur le sujet, raison pour laquelle ce chapitre a été ajouté à ce mémoire. La détermination des caractéristiques dynamiques modales et leurs évolutions en fonction de certains paramètres de fonctionnement de l’aube constituent l’objet de cette partie. Plusieurs modèles sont développés et comparés pour pouvoir juger de la présence et de l’importance des divers phénomènes non linéaires dans la réponse forcée d’une poutre en rotation. / Vibration reduction of a turbojet fan blade with piezoelectric patches connected to a passive or semipassive electrical circuit, commonly called "shunt", is addressed in this study. The purpose of this work is to present a method for maximizing the performance of piezoelectric shunts. To validate the model, 2 experiments on a CFM56-7b fan blade are then done. To improve the damping level, a key issue is the optimization of the whole system, in terms of location and size of the piezoelectric patches and electric circuit components choice. It was shown these two optimizations, mechanical and electrical, can be realized separately. Moreover, it is proved the only parameters to maximize are the modal electromechanical coupling factors, which characterize the energy exchanges between the mechanical structure and the piezoelectric patches for a given mode. Since the optimal value of the electric circuit parameters are known as functions of the coupling factors and the system structural characteristics, they can be evaluated in a second step. Thus, the mechanical optimization consists in maximizing the coupling factors by optimizing the patches positions and dimensions, i.e. finding the best design. To fulfill this requirement and in order to manage a complex geometry, a 3D finite element formulation of the coupled electromechanical problem is derived from the one developed by Julien Ducarne during his Ph.D. thesis. A reduced order model of the discretized problem is then obtained by expanding the mechanical displacement unknowns vector onto the short-circuit eigenmodes to get the modal electromechanical coupling factors. However, when the optimization aims to reduce the vibration level with several patches, the main concern arises from the huge number of possible designs to test. For that reason, a method is proposed to cut back simulations time as well as to cope with the many local minima. This method consists in splitting up the optimization procedure in two steps. In the first one, the influence of patches on the structural eigenmodes is neglected. Therefore, an analytic coupling indicator, based on the eigenmodes of the naked host structure, can be defined and gives rise to a first approximate optimization using a simulated annealing algorithm. Then, the solutions of the first step are used as a starting point for a second optimization, working with the tabu search algorithm and where eigenmodes are computed for each new tested design.
36

An experimental study of film cooling, thermal barrier coatings and contaminant deposition on an internally cooled turbine airfoil model

Davidson, Frederick Todd 13 July 2012 (has links)
Approximately 10% of all energy consumed in the United States is derived from high temperature gas turbine engines. As a result, a 1% increase in engine efficiency would yield enough energy to satisfy the demands of approximately 1 million homes and savings of over $800 million in fuel costs per year. Efficiency of gas turbine engines can be improved by increasing the combustor temperature. Modern engines now operate at temperatures that far exceed the material limitations of the metals they are comprised of in the pursuit of increased thermal efficiency. Various techniques to thermally protect the turbine components are used to allow for safe operation of the engines despite the extreme environments: film cooling, internal convective cooling, and thermal barrier coatings. Historically, these thermal protection techniques have been studied separately without account for any conjugate effects. The end goal of this work is to provide a greater understanding of how the conjugate effects might alter the predictions of thermal behavior and consequently improve engine designs to pursue increased efficiency. The primary focus of this study was to complete the first open literature, high resolution experiments of a modeled first stage turbine vane with both active film cooling and a simulated thermal barrier coating (TBC). This was accomplished by scaling the thermal behavior of a real engine component to the model vane using the matched Biot number method. Various film cooling configurations were tested on both the suction and pressure side of the model vane including: round holes, craters, traditional trenches and a novel modified trench. IR thermography and ribbon thermocouples were used to measure the surface temperature of the TBC and the temperature at the interface of the TBC and vane wall, respectively. This work found that the presence of a TBC significantly dampens the effect of altering film cooling conditions when measuring the TBC interface temperature. This work also found that in certain conditions adiabatic effectiveness does not provide an accurate assessment of how a film cooling design may perform in a real engine. An additional focus of this work was to understand how contaminant deposition alters the cooling performance of a vane with a TBC. This work focused on quantifying the detrimental effects of active deposition by seeding the mainstream flow of the test facility with simulated molten coal ash. It was found that in most cases, except for round holes operating at relatively high blowing ratios, the performance of film cooling was negatively altered by the presence of contaminant deposition. However, the cooling performance at the interface of the TBC and vane wall actually improved with deposition due to the additional thermal resistance that was added to the exterior surface of the model vane. / text
37

Návrh technologie výroby výstelky labyrintové ucpávky / Technology design of labyrinth packing lining production

Katolický, Jiří January 2008 (has links)
The diploma work is focused to evaluation of contemporary state of sealing system solution of high speed turbine engines in the world and, newly suggesting nontraditional design of labyrinth sealing lining for turbine side of small turbojet engine, including the production technology, technical-economic classification and experimental verification.
38

High Strain Rate Data Acquisition of 2D Braided Composite Substructures

Ruggeri, Charles R. 23 December 2009 (has links)
No description available.
39

Evaluation of a Particle Sampling Probe to Measure Mass Concentration in Particle-Laden Flows

Coulon, Thomas Alexander 11 May 2022 (has links)
Particle ingestion is a prevalent issue for jet engines. During operation, sand and ash particles enter the engine and can cause serious problems, including erosion and buildup of Calcia-Magnesia-Alumina-Silicate (CMAS) deposits. Analyzing the particle mass concentration of the airflow can help better understand this issue. This can best be accomplished by sampling particles with a sampling probe at various locations within an engine. The present study is a continuation of a previous study that developed and evaluated a novel sampling probe. The present study seeks to modify the probe to optimize its sampling capability, to evaluate the aerodynamics of the modified probe through Particle Imaging Velocimetry (PIV), to gain insight on its ability to sample smaller particles, to characterize the movement of larger particles as they are sampled using Particle Tracking Velocimetry (PTV), and to develop a method to physically measure particle mass concentration. To accomplish this, a free jet rig was used to create a particle-laden flow, and the probe was placed at the jet exit to sample particles. A laser and camera system were used to capture images of the probe for PIV and PTV. A particle collection apparatus was designed to collect and weigh particles captured by the probe to measure mass concentration. The PIV results indicate that the probe exhibits sub-isokinetic sampling behavior. However, the PTV results show that large particles are not affected by non-isokinetic conditions. The mass concentration measured by the probe decreases when the flow Mach number increases due to the higher flow velocity causing particles to be spaced further apart. The mass concentration measured by the probe decreases when the probe yaw angle increases due to lower projected probe inlet area. / Master of Science / Sand and ash particles are harmful to jet engines. Particle ingestion can greatly affect the useful life of the engine. Particles erode the machinery within the engine, and they also melt to form mineral deposits, all of which degrades performance. One method that is being developed to better understand this problem is to sample particles at various locations in the engine using a sampling probe. The concept of a sampling probe is simple: particles are captured by the probe inside the engine, and the particles are collected outside the engine for analysis. This would give insight on particle behavior in the engine. The present study is a continuation of a previous study that developed and evaluated a novel sampling probe. The present study seeks to modify the probe to optimize its sampling capability, to use advanced imaging techniques to characterize the movement of air and particles entering the probe, and to safely collect and weigh particles captured by the probe. A compressed air jet was used to accelerate particles and create a particle-laden environment akin to the inside of an engine. The probe was placed at the exit of the jet to sample particles. A laser and camera system were used to capture images of the probe during the particle-sampling process. A particle collection apparatus was designed to safely collect and store particles captured by the probe for weighing. The image and weight data were then used to make conclusions about the probe's sampling capability.
40

Development of a Novel Probe for Engine Ingestion Sampling in Parallel With Initial Developments of a High-speed Particle-laden Jet

Collins, Addison Scott 07 December 2021 (has links)
Particle ingestion remains an important concern for turbine engines, specifically those in aircraft. Sand and related particles tend to become suspended in air, posing an omnipresent health threat to engine components. This issue is most prevalent during operation in sandy environments at low altitudes. Takeoffs and landings can blow a significant quantity of particulates into the air; these particulates may then be ingested by the engine. Helicopters and other Vertical Takeoff and Landing (VTOL) aircraft are at high risk of engine damage in these conditions. Compressor blades are especially vulnerable, as they may encounter the largest of particles. Robust and thorough experimental and computational studies have been conducted to understand the relationships between particle type, shape, and size and their effects on compressor and turbine blade wear. However, there is a lack of literature that focuses on sampling particles directly from the flow inside an engine. Instead, experimental studies that estimate the trajectories and behavior of particles are based upon the resulting erosion of blades and the expected aerodynamics and physics of the region. It is important to close this gap to fully understand the role of particulates in eroding engine components. This study investigated the performance of a particle-sampling probe designed to collect particles after the first compressor stage of a Rolls-Royce Allison Model 250 turboshaft engine. The engine was not used in this investigation; rather, a rig that creates a particle-laden jet was developed in order to determine probe sampling sensitivity with respect to varying angles of attack and flow Mach number. Particle image velocimetry (PIV) was utilized to understand the aerodynamic effects of the probe on smaller particles. / Master of Science / Aircraft jet engines are constantly exposed to particles suspended in the atmosphere. Most jet engines contain several stages of spinning blades. The first series of stages near the front of the engine comprise the compressor, while the series towards the end of the engine comprise the turbine. Engines depend on compressor blades to add energy to the flow via compression and turbine blades to extract energy from the flow after combustion. Thus, they are critical for the successful operation of the engine. The constant impact of airborne particulates against these blades causes erosion, which alters blade geometry and thereby engine performance. Depending on the turbine inlet temperature, particles may melt and clog the cooling passages in turbine blades, causing serious damage as the blades reach temperatures above their intended operating regime. These damages inhibit the ability of the engine to operate properly and pose a serious safety risk if left unchecked. In literature, experimental engine erosion correlations and numerical models of particle trajectories through the engine have been developed; however, none of these studies collected particles directly from the compressor region of the engine. In this study, a probe was developed and evaluated for the purpose of sampling particulates between the first and second compressor stages of a Rolls-Royce Allison Model 250 turboshaft engine. The probe's efficacy and aerodynamic properties were analyzed such that the probe will provide processable data when inserted into the engine. The methods to obtain this data include particle-sampling and particle image velocimetry (PIV).

Page generated in 0.06 seconds