• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 12
  • 2
  • 1
  • Tagged with
  • 67
  • 67
  • 26
  • 18
  • 18
  • 17
  • 15
  • 15
  • 14
  • 14
  • 14
  • 13
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Experimental And Theoretical Studies On Jet Acoustics

Pundarika, G 12 1900 (has links)
A systematic research on aeroacoustics conducted around the world for the last few decades has revealed various inherent characteristics of the jet noise radiation. However, a lot more needs to be done for the theoretical as well as experimental predictions of various jet noise features based on actual flow details. The work reported in the present thesis is an attempt in this direction. A critical study of existing literature on jet noise shows that none of the general wave equations lends itself easily for predictions of all the jet noise features. It is shown that while LighthilPs classical acoustic analogy approach, with some reasonable approximations, can be used to yield most of the information needed by the engineers, the convected wave equations of Phillips and Lilley are required to study the acoustic radiation in what has come to be known as "Refraction valley" or "Cone of relative silence". The characteristics of the sound field of underexpanded cold jet impingement flows were studied by measuring the noise emanating from two convergent nozzles of throat diameter 2.5 mm and 5 mm each and a convergent - divergent nozzle of exit diameter of 6.49 mm, when the jet impinges on a flat plate kept perpendicular to the direction of the jet. The measurements were conducted upstream of the nozzle over an extensive envelope of jet operating conditions such as chamber stagnation pressure, mass flow rate through the nozzle and diameter of the nozzle. The source strength at the jet boundary was obtained by measuring acoustic pressure amplitude close to the jet contour assuming it as locally cylindrical. Particular attention was focussed on backward projection of the sound field on to a cylindrical surface. This is the application of acoustic holography to study the sound radiation in the audio frequency region. With the help of FFT and software developed for this purpose, the theoretical predictions using data from several cylindrical surfaces were compared. A detailed analysis of noise radiation from a cold sonic and supersonic free jet was also carried out. The experimental work involved the measurement of noise field from a 2.5 mm, 5 mm convergent and a convergent - divergent nozzle of exit diameter of 6.49 mm and area ratio 1.687 for designed Mach number of two. The experimental setup consisted essentially of a pressure chamber made of mild steel, designed to withstand 50 bar pressure. This chamber is a cylinder with dia 0.421 m and length 0.85 m. The nozzles were made of mild steel. Compressed air approximately at room temperature is supplied to the nozzle via a control valve. The measuring and recording instruments consists of B & K Microphones, Preamplifiers, Conditioning amplifier and a Mediator, which measure a Sound Pressure Level at a point. The nozzles were operated at pressure ratio upto 25 bar. The noise signal was processed through 12 channel data acquisition system. Acoustic pressure and SPL were" calculated using theoretical relations and software developed. Using this software Fast Fourier Transformations of raw signal was obtained from 20 Hz to 20 kHz. Also constant SPL contour graphs were obtained. Source strength distribution at the jet boundary has been obtained by the principle of acoustic holography. Experimental values are closely matching with the results obtained by acoustic holography. The percentage error for acoustic pressure and SPL were less than 12%. The experimental results were used to obtain the source distribution in terms of gross jet parameters.
52

Caracterização experimental do campo de velocidade e campo acústico de um jato simples subsônico / Experimental characterization of velocity and acoustic fields of single-stream subsonic jet

Proença, Anderson Ramos 26 September 2013 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The purpose of this work is to study and characterize aerodynamically a free jet operating at subsonic regime and identify its acoustic signature. This study aims to analyze fundamentally the turbulent structures and the total noise produced at different Mach numbers. This kind of research is crucial to the understanding of these mechanisms of noise generation and propagation, and it is extremely important for aeronautical applications, for instance, the jet engine exhaust. The research is done by analysing the data obtained in experiments using pitot tube, hot-wire anemometer and acoustic measurements. This work also describes the experimental procedures for each step of analysis, as well as the characteristics of jet noise facilities. The data from measurements with a pitot tube was used to study the mean velocity profiles. The average properties are also analyzed with an anemometry system, likewise used to study the turbulent intensity at eleven axial lines, ranging from the centerline to the edge of the nozzle (lipline). These results are compared with literature and has verified the accuracy of hot-wire anemometers for turbulent intensities lower than 15%. The aerodynamic data are obtained for Mach numbers 0.25, 0.50 and 0.75, from the nozzle exit to thirteen diameters in the direction of the jet. The acoustic study is carried out by analyzing the sound pressure level obtained at six positions in the far field, with observer angles ranging from 40 to 110º. In this campaign more velocities are studied with Mach numbers from 0.18 to 1.00 with step of 0.05 are described. A database with the sound pressure level as a function of frequency is constructed from this information. / O objetivo deste trabalho é estudar e caracterizar aerodinamicamente um jato livre operando em regime subsônico e identificar a assinatura acústica do mesmo. Esse estudo busca analisar fundamentalmente as estruturas turbulentas e o ruído total produzido em diferentes números de Mach. Tal estudo é crucial para o entendimento desses mecanismos de geração e propagação, e encontra extrema importância para aplicações aeronáuticas, como, por exemplo, a exaustão de motores a reação (jato). A investigação é feita através da análise dos dados obtidos em experimentos utilizando tubo de pitot, anemômetro de fio-quente e ensaios acústicos. Neste trabalho também são descritos os procedimentos experimentais de cada etapa de análise, bem como as características dos laboratórios utilizados para o estudo do ruído de jato. Com os dados provenientes das medições com tubo de pitot são estudados os perfis de velocidade média. As propriedades médias também são analisadas com o sistema de anemometria, que ainda é utilizado para estudo da intensidade turbulenta em onze linhas axiais, variando da linha de centro até a borda do bocal (lipline). Estes resultados são comparados com a literatura e é constatada a acurácia dos anemômetros de fio-quente para intensidades turbulentas menores que 15%. Os dados aerodinâmicos mencionados são obtidos para números de Mach 0,25, 0,50 e 0,75, a partir da saída do bocal até treze diâmetros na direção do jato. O estudo acústico é feito através da análise do nível de pressão sonora obtido em seis posições no campo distante, com ângulos de observação variando de 40 a 110º. Diferentes velocidades também foram analisadas, desta vez, com números de Mach de 0.18 a 1.00 com passo de 0.05. Um banco de dados com o nível de pressão sonora em função da frequência é construído a partir destas informações. / Mestre em Engenharia Mecânica
53

Wavepackets as sound-source mechanisms in subsonic jets / Les paquets d'ondes comme mécanismes de génération de bruit des jets subsoniques

Cavalieri, André Valdetaro Gomes 18 June 2012 (has links)
On considère les paquets d'ondes hydrodynamiques comme mécanismes de génération de bruit des jets subsoniques. Cette approche résulte tout d'abord de l'analyse de données numériques - DNS d'une couche de mélange (Wei et Freund 2006) et LES d'un jet à Mach 0,9 (Daviller 2010) - permettant de déterminer les propriétés des sources en termes de compacité, d'intermittence et de structure azimutale. L'identification d'un rayonnement intermittent associé aux modifications des structures cohérentes des écoulements permet de proposer un modèle de paquet d'onde pour représenter ce phénomène dans l'analogie de Lighthill, dont l'enveloppe présente des variations temporelles d'amplitude et d'étendue spatiale. Celles-ci sont tirées de données de vitesse de simulations numériques de jets subsoniques, et un accord de l'ordre de 1,5dB entre le champ acoustique simulé et le modèle confirme sa pertinence. L'exploration du concept proposé est ensuite poursuivie expérimentalement, avec des mesures de pression acoustique et de vitesse de jets turbulents subsoniques, permettant la décomposition des champs en modes de Fourier azimutaux. On observe l'accord des directivités des modes 0, 1 et 2 du champ acoustique avec le rayonnementd'un paquet d'onde. Les modes 0 et 1 du champ de vitesse correspondent également à des paquets d'onde, modélisés comme des ondes d'instabilité linéaires à partir des équations de stabilité parabolisées. Finalement, des corrélations de l'ordre de 10% entre les modes axisymétriques de vitesse dans le jet et de pression acoustique rayonnée montrent un lien clair entre les paquets d'onde et l'émission acoustique du jet. / Hydrodynamic wavepackets are studied as a sound-source mechanism in subsonic jets. We first analyse numerical simulations to discern properties of acoustic sources such as compactness, intermittency and azimuthal structure. The simulations include a DNS of a two-dimensional mixing layer (Wei and Freund 2006) and an LES of a Mach 0.9 jet (Daviller 2010). In both cases we identify intermittent radiation, which is associated with changes in coherent structures in the flows. A wave-packet model that includes temporal changes in amplitude and axial extension is proposed to represent the identified phenomena using Lighthill's analogy. These parameters are obtained from velocity data of two subsonic jet simulations, and an agreement to within 1.5dB between the model and the acoustic field of the simulations confirms its pertinence. The proposed mechanism is then investigatedexperimentally, with measurements of acoustic pressure and velocity of turbulent subsonic jets, allowing the decomposition of the fields into azimuthal Fourier modes. We find close agreement of the directivities of modes 0, 1 and 2 of the acoustic field with wave-packet radiation. Modes 0 and 1 of the velocity field correspond also to wavepackets, modelled as linear instability waves using parabolised stability equations. Finally, correlations of order of 10% between axisymmetric modes of velocity and far-field pressure show the relationship between wavepackets and sound radiated by the jet.
54

Design Study of Moderate to High Aspect Ratio Rectangular Supersonic Exhaust Systems: Flow, Acoustics, and Fluid-Structure InteractionsDesign Study of Moderate to High Aspect Ratio Rectangular Supersonic Exhaust Systems: Flow, Acoustics, and Fluid-Structure Interactions

MallaMalla, BhupatindraBhupatindra January 2021 (has links)
No description available.
55

Understanding and Control of Coupling of Supersonic Twin Jets Using Localized Arc Filament Plasma Actuators

Cluts, Jordan Dean January 2018 (has links)
No description available.
56

Self-Excited Oscillations of the Impinging Planar Jet

Arthurs, David 10 1900 (has links)
<p>This thesis experimentally investigates the geometry of a high-speed subsonic planar jet impinging orthogonally on a large, rigid plate at some distance downstream. This geometry has been found to be liable to the production of intense narrowband acoustic tones produced by self-excited flow oscillations for a range of impingement ratio, Mach number and nozzle thickness. Self-excited flows and acoustic tones were found to be generated in two distinct flow regimes: a linear regime occurring at relatively low Mach number, and a fluid-resonant regime occurring at higher Mach numbers. The linear regime has been found to generate acoustic tones exhibiting relatively low pressure amplitudes with frequencies which scale approximately linearly with increasing Mach number, and is produced by a traditional feedback mechanism, whereas tones within the fluid-resonant regime are produced by coupling between the unstable hydrodynamic modes of the jet and trapped acoustic modes occurring between the nozzle and the plate, and produce tones at significantly larger amplitudes. Coupling with these trapped acoustic modes was found to dominate the self-excited response of the system in the fluid-resonant regime, with the frequencies of these acoustic modes determining the unstable mode of the jet being excited, and with the impingement ratio of the flow having only minor effects related to the convection speed. Phase-locked PIV measurements have revealed that self-excited flow oscillations in the fluid-resonant regime are produced by a series of five anti-symmetric modes of the jet, along with a single symmetric mode occurring for small impingement ratios. The behavior of large coherent flow structures forming in the flow has been investigated and quantified, and this information has been used to develop a new feedback model, which can be used to accurately predict the self-excited flow oscillation of the jet.</p> / Doctor of Philosophy (PhD)
57

Effet sur le bruit de jet de l'excitation de modes instables : rôle des interactions non linéaires / Effect of unstable modes excitation on jet noise : the role of nonlinear interactions

Itasse, Maxime 01 December 2015 (has links)
Cette étude s'inscrit dans l'effort de réduction des nuisances sonores des avions au décollage. Une des principales composantes est le bruit de jet, dont la partie à basse fréquence peut notamment être imputée au rayonnement acoustique directif des structures cohérentes de grande échelle engendrées par les instabilités dans la couche de mélange du jet. L'évolution de ces ondes d'instabilité peut être décrite au moyen des équations de Stabilité Parabolisées (PSE). Un premier objectif a été de déterminer si dans le cas d'un jet turbulent naturel, les interactions non linéaires entre les ondes d'instabilité ont un impact significatif sur sa dynamique et sur son rayonnement acoustique. À cet effet, une modélisation PSE non linéaire a été développée et appliquée à une configuration réaliste. La possibilité de manipuler ces ondes d'instabilité par non linéarité a ensuite été étudiée en vue d'une réduction du rayonnement acoustique. Pour cela, une analyse PSE a été menée pour déterminer l'effet sur le bruit de jet de l'excitation d'un ou plusieurs modes instables. Ces travaux de thèse ont permis de montrer, d'une part, que les non linéarités semblent avoir un impact mineur sur la dynamique des ondes d'instabilité dans le cas des jets turbulents naturels, et d'autre part, qu'il est possible de réduire le rayonnement acoustique des modes dominants par interactions non linéaires. / This study is part of the effort to reduce aircraft noise during take-off. Jet noise is oneof the main contributors, of which lower frequency component can be attributed to thedirective acoustic field generated by the large-scale coherent structures arising from jetmixing-layer instabilities. The development of these instability waves can be describedusing Parabolized Stability Equations (PSE). A first objective was to determine if inthe case of a natural turbulent jet, nonlinear interactions between instability waveshave a significant impact on its dynamic and acoustic behaviour. For this purpose,a nonlinear PSE model has been developed and applied to a realistic configuration.Then, the possibility to manipulate these instability waves by means of nonlinearity wasinvestigated with a view to reduce noise. To this end, a PSE analysis has been carried outto assess the impact on jet noise of exciting one or more unstable modes. The findingsof this doctoral work demonstrate a minor impact of nonlinearities on the dynamics ofinstability waves for natural turbulent jets on the one hand, and the possibility to makethe initially dominant instability acoustically ineffective using nonlinear interactions onthe other hand.
58

Numerical simulation of aerodynamic noise in low Mach number flows / Calcul numérique du bruit aérodynamique en régime subsonique

Detandt, Yves 13 September 2007 (has links)
The evaluation of the noise produced by flows has reached a high level of importance in the past years. The physics surrounding flow-induced noise is quite complex and sensitive to various flow conditions like temperature, shape. Empirical models were built in the past for some special geometries but they cannot be used in a general case for a shape optimization for instance. Experimental aeroacoustic facilities represent the main tool for acoustic analyses of flow fields, but are quite expensive because extreme care must be exercised not to introduce acoustic perturbations in the flow (silent facilities). These tools allow a good analysis of the physical phenomena responsible for noise generation in the flow by a comparison of the noise sources and the flow characteristics (pressure, turbulence,). Nevertheless, the identification and location of noise sources to compare with flow structures requires quite complex methods.<p><p>The numerical approach complements the experimental one in the sense that the flow characteristics are deeply analyzed where experiments suggest noise production. For the numerical approach, the turbulence modeling is quite important. In the past, some models were appreciated for their good prediction of some aerodynamic parameters as lift and drag for instance. The challenge is now to tune these models for a correct prediction of the noise sources. In the low subsonic range, the flow field is completely decoupled from acoustics, and noise sources can be computed from a purely hydrodynamic simulation before this information is transferred to an acoustical solver which will compute the acoustic field at the listener position. This post processing of the aerodynamic results is not obvious since it can introduce non-physical noise into the solution.<p><p>This project considers the aspect of noise generation in turbulent jets and especially the noise generated by vortex pairing, as it occurs for instance in jet flows. The axisymmetric version of the flow solver SFELES has been part of this PhD research, and numerical results obtained on the jet are similar to the experimental values. Analyses performed on the numerical results are interesting to go to complete turbulence modeling for aeroacoustics since vortex pairing is one of the basic acoustical processes in vortex dynamics.<p><p>Currently, a standard static Smagorinski model is used for turbulence modeling. However, this model has well known limitations, and its influence on the noise sources extracted from the flow field is not very clear. For this reason, it is planned to adopt a dynamic procedure in which the subgrid scale model automatically adapts to the flow. We planned also to perform simulations with the variational multiscale approach to better simulate the different interactions between large and unresolved scales. The commercial software ACTRAN distributed by Free Field Technologies is used for the computation of sound propagation inside the acoustic domain. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
59

Mixing Enhancement Studies on Supersonic Elliptic Sharp Tipped Shallow (ESTS) Lobed Nozzles

Varghese, Albin B M January 2016 (has links) (PDF)
Rapid mixing and spreading of supersonic jets are two important characteristics in supersonic ejectors, noise reduction in jets and fuel mixing in supersonic combustion. It helps in changing the acoustic and thermal signature in supersonic exhaust. The supersonic nozzles in most cases result in compressible mixing layers. The subsonic nozzles form incompressible mixing layers but at high Mach numbers even they form compressible mixing layers. Compressible mixing layers have been found to have much lower mixing and spreading rates than incompressible mixing layer Birch & Eggers (1972). In order to enhance the spreading and mixing of mixing layers from supersonic nozzles various active and passive methods have been deviced. Active methods include fluid injection, fluid lobes and plasma actuation. Passive methods are mostly based on modifying the nozzle geometry such that the fluid expansion is ideal or the shock cell is broken. Many nozzles with exotic shapes have been developed to obtain mixing enhancements in supersonic jets Gutmark et al. (1995). To achieve enhanced mixing an innovative nozzle named as the Elliptic Sharp Tipped Shallow (ESTS) lobed nozzle has been developed in L.H.S.R., I.I.Sc., India Rao & Jagadeesh (2014). This nozzle has a unique geometry involving elliptical lobes and sharp tips. These lobes are generated using a simple manufacturing process from the throat to the exit. This lobed and sharp tipped structure introduces stream wise vortices and azimuthal velocity components which must help in enhanced mixing and spreading. The ESTS lobed nozzle has shown mixing enhancement with 4 lobes. The spreading rate was found to be double of the reference conical nozzle. This thesis is motivated by the need to investigate the flow physics involved in the ESTS lobed nozzle. The effect of varying the number of lobes and the design Mach number of the nozzle on the mixing and spreading characteristics will be further discussed. Visualisation studies have been performed. The schlieren and planar LASER Mie scattering techniques have been used to probe the flow. Instantaneous images were taken at axial planes with the reference conical and ESTS nozzles with three, four, five and six lobes. The nozzles are for design Mach number 2.0 and 2.5. The stagnation chamber pressure was maintained to obtain over expanded, ideally expanded and under expanded flows. LASER scattering was obtained by seeding the flow with water to observe the behaviour of the primary flow. The condensation of moisture due to the cold primary flow mixing with the ambient air was exploited to scatter laser and observe the flow structures in the mixing layer. A comparison of the images of the reference conical nozzle and the ESTS lobed nozzles shows changes in the mixing layers due to the ESTS lobed nozzles. The image of the reference conical nozzle shows a distinct potential core and mixing layers all along the length of the image. For the ESTS lobed nozzles this distinction becomes unclear shortly after the nozzle exit. Thus mixing of the primary flow and ambient air is seen to be enhanced in the case of all the ESTS lobed nozzles. The flow in the case of the ESTS lobed nozzles if found to be highly non axis symmetric. The starting process of the nozzles has been visualised using time resolved schlieren. Image processing was performed on the nozzles to quantify the spread rate. The shock structure of the nozzles has been studied and found to be modified due to the lobed geometry. The level of convolution of the mixing layer due to the lobed structure has been studied using fractal analysis. The four lobed nozzle was found to have the highest spread rate and th most convoluted shear layer. Hence this nozzle was further studied using background oriented schlieren and particle image velocimetry to quantify the flow field. These experimental results have been compared with CFD simulations using the commercial software CFX5. The computations and experiments don’t match accurately but the trends match. This allows for simulations to be used as a good first approximation. The acoustic properties of a jet are dependent on the flow structure behaviour. The ESTS lobes have been found to change the flow structure. Hence the ESTS lobed nozzle was predicted to change the acoustic signature of the flow. The acoustic measurements of the flow were carried out at National Aerospace Laboratories, Bengaluru. The screech of the overexpanded flow was seen to be eliminated and the overall sound levels were found to have been reduced in all cases. Thus the lobed nozzle was found to have acoustic benefits over the reference conical nozzle. Thus the ESTS lobed nozzle has been studied and compared with the conical nozzle using several methods. The changes due to the lobed structure have been studied quantitatively. Future studies would focus on the change in thrust due to the lobed structure. Also new geometries have been proposed inspired by the current design but with possible thrust benefits or manufacturing benefits.
60

Etude numérique de la production et de la propagation d'ondes non linéaires dans les jets supersoniques / Numerical study of the generation and propagation of nonlinear acoustic waves in supersonic jets

Pineau, Pierre 30 November 2018 (has links)
Dans ce travail de thèse, les mécanismes à l'origine de la formation des chocs associés à la perception de crackle proche de jets supersoniques axisymétriques sont étudiés à l'aide de simulations numériques. Dans ces simulations, les équations de Navier-Stokes instationnaires et compressibles sont résolues en coordonnées cylindriques à l'aide de différences finies d'ordre élevé peu dissipatives et peu dispersives. Quatre jets temporels à des nombres de Mach de 2 et~3 et à des nombres de Reynolds compris entre 3125 et 50000 sont simulés dans un premier temps. Des ondes acoustiques de forte amplitude présentant d'importants gradients de pression sont mises en évidence à proximité des jets. Elles se forment par un mécanisme de raidissement à la source qui est étudié par le calcul de moyennes conditionnelles synchronisées autour des pics de pression en champ proche. Ces moyennes montrent un lien direct entre ces ondes non linéaires et la convection de structures cohérentes à desvitesses supersoniques dans les couches de~mélange. L'influence de la température sur la formation de ces ondes est examinée dans un second temps par le calcul de cinq jets temporels à des rapports de température de 1, 2 et 4, et à des nombres de Mach acoustique compris entre 2 et 4. À vitesse d'éjection constante, les niveaux de bruit produits par les jets chauds sont moins élevés que ceux du jet isotherme, mais les ondes non linéaires qu'ils rayonnent sont peu affectées par une hausse de température. À nombre de Mach constant, les niveaux augmentent avec la température, de même que l'asymétrie des fluctuations de pression, traduisant un renforcement du caractère non linéaire des ondes rayonnées. Ces variations pourraient être dues à celles de la vitesse de convection des structures cohérentes, qui augmente de façon significative avec la température lorsque le nombre de Mach est constant, mais diminue légèrement à vitesse~constante. Finalement, trois simulations de jets spatiaux isothermes et chauds à un nombre de Mach acoustique de 2 et à des nombres de Reynolds de 12500 et 50000 sont mises en \oe uvre. Des ondes de Mach présentant d'importants gradients de pression sont visibles au voisinage direct des jets. La formation de ces ondes est liée, comme dans le cas des jets temporels, à la convection supersonique de structures cohérentes dans les couches de mélange. Le champ lointain acoustique est enfin déterminé par des méthodes d'extrapolation linéaire et non linéaire. Lorsque la propagation est non linéaire, un raidissement additionnel des fronts d'onde est constaté en champ lointain. / Numerical simulations are carried out with the aim of investigating the formation of nonlinear steepened waves at the origin of crackle in the near acoustic field of supersonic jets. In these simulations, the compressible Navier-Stokes equations are solved in cylindrical coordinates using high-order low-dissipative and low-dispersive finite difference schemes.Four temporally-developing isothermal round jets are first simulated at Mach numbers of~2 and~3 and at Reynolds numbers ranging from 3,125 to 50,000. Strong acoustic waves containing sharp pressure variations are observed in the vicinity of the jets. Their formation process is described by the computation of conditional averages which are triggered by the detection of strong pressure peaks in the near field. Such steepened waves are then shown to be produced by the supersonic motion of coherent structures inside the jet shear layers.Temperature effects are then investigated by considering five temporal round jets at temperature ratios of 1, 2 and~4 and at acoustic Mach numbers of 2, 2.8 and 4. For a given jet speed, the sound levels produced by the hot jets are lower than those of the isothermal one. However, the properties of the steepened waves they generate are not significantly affected by a rise of temperature. On the contrary, when the Mach number is held constant, pressure levels are higher at high temperature. The skewness and kurtosis factors of pressure fluctuations are also increased, which indicates a strengthening of the asymmetry and the intermittency of the pressure fluctuations. It is likely that the influence of temperature on these waves results from the variations of the convection speed, which is found to significantly increase with temperature at constant Mach number, but to slightly decrease at constant jet speed.Finally, three simulations of spatially-developing axisymmetric, isothermal and hot jets at a Mach number of~2 and at Reynolds numbers of 12500 and 50000 are performed. Strong Mach waves possessing the distinctive features of crackle are visible in the near vicinity of the jets. As observed for temporal simulations, their formations are associated with the supersonic motion of large-scale coherent structures inside the jet shear layers. The far acoustic field is determined using linear as well as nonlinear extrapolation methods. When nonlinear propagation effects are taken into account, a further steepening of the wavefronts is observed with increasing propagation distance.

Page generated in 0.1234 seconds