Spelling suggestions: "subject:"parabolized stability equations"" "subject:"catabolized stability equations""
1 |
Interaction Between Aerothermally Compliant Structures and Boundary-Layer Transition in Hypersonic FlowRiley, Zachary Bryce, Riley January 2016 (has links)
No description available.
|
2 |
Stability analysis and transition prediction of wall-bounded flowsLevin, Ori January 2003 (has links)
<p>Disturbances introduced in wall-bounded .ows can grow andlead to transition from laminar to turbulent .ow. In order toreduce losses or enhance mixing in energy systems, afundamental understanding of the .ow stability is important. Inlow disturbance environments, the typical path to transition isan exponential growth of modal waves. On the other hand, inlarge disturbance environments, such as in the presence of highlevels of free-stream turbulence or surface roughness,algebraic growth of non-modal streaks can lead to transition.In the present work, the stability of wall-bounded .ows isinvestigated by means of linear stability equations valid bothfor the exponential and algebraic growth scenario. Anadjoint-based optimization technique is used to optimize thealgebraic growth of streaks. The exponential growth of waves ismaximized in the sense that the envelope of the most ampli.edeigenmode is calculated. Two wall-bounded .ows areinvestigated, the FalknerSkan boundary layer subject tofavorable, adverse and zero pressure gradients and the Blasiuswall jet. For the FalknerSkan boundary layer, theoptimization is carried out over the initial streamwiselocation as well as the spanwise wave number and the angularfrequency. Furthermore, a uni.ed transition-prediction methodbased on available experimental data is suggested. The Blasiuswall jet is matched to the measured .ow in an experimentalwall-jet facility. Linear stability analysis with respect tothe growth of two-dimensional waves and streamwise streaks areperformed and compared to the experiments. The nonlinearinteraction of introduced waves and streaks and the .owstructures preceding the .ow breakdown are investigated bymeans of direct numerical simulations.</p><p>Descriptors: Boundary layer, wall jet, algebraic growth,exponential growth, lift-up e.ect, streamwise streaks,Tollmien-Schlichting waves, free-stream turbulence, roughnesselement, transition prediction, Parabolized StabilityEquations, Direct Numerical Simulation.</p>
|
3 |
Effet sur le bruit de jet de l'excitation de modes instables : rôle des interactions non linéaires / Effect of unstable modes excitation on jet noise : the role of nonlinear interactionsItasse, Maxime 01 December 2015 (has links)
Cette étude s'inscrit dans l'effort de réduction des nuisances sonores des avions au décollage. Une des principales composantes est le bruit de jet, dont la partie à basse fréquence peut notamment être imputée au rayonnement acoustique directif des structures cohérentes de grande échelle engendrées par les instabilités dans la couche de mélange du jet. L'évolution de ces ondes d'instabilité peut être décrite au moyen des équations de Stabilité Parabolisées (PSE). Un premier objectif a été de déterminer si dans le cas d'un jet turbulent naturel, les interactions non linéaires entre les ondes d'instabilité ont un impact significatif sur sa dynamique et sur son rayonnement acoustique. À cet effet, une modélisation PSE non linéaire a été développée et appliquée à une configuration réaliste. La possibilité de manipuler ces ondes d'instabilité par non linéarité a ensuite été étudiée en vue d'une réduction du rayonnement acoustique. Pour cela, une analyse PSE a été menée pour déterminer l'effet sur le bruit de jet de l'excitation d'un ou plusieurs modes instables. Ces travaux de thèse ont permis de montrer, d'une part, que les non linéarités semblent avoir un impact mineur sur la dynamique des ondes d'instabilité dans le cas des jets turbulents naturels, et d'autre part, qu'il est possible de réduire le rayonnement acoustique des modes dominants par interactions non linéaires. / This study is part of the effort to reduce aircraft noise during take-off. Jet noise is oneof the main contributors, of which lower frequency component can be attributed to thedirective acoustic field generated by the large-scale coherent structures arising from jetmixing-layer instabilities. The development of these instability waves can be describedusing Parabolized Stability Equations (PSE). A first objective was to determine if inthe case of a natural turbulent jet, nonlinear interactions between instability waveshave a significant impact on its dynamic and acoustic behaviour. For this purpose,a nonlinear PSE model has been developed and applied to a realistic configuration.Then, the possibility to manipulate these instability waves by means of nonlinearity wasinvestigated with a view to reduce noise. To this end, a PSE analysis has been carried outto assess the impact on jet noise of exciting one or more unstable modes. The findingsof this doctoral work demonstrate a minor impact of nonlinearities on the dynamics ofinstability waves for natural turbulent jets on the one hand, and the possibility to makethe initially dominant instability acoustically ineffective using nonlinear interactions onthe other hand.
|
4 |
Linear Stability Models for Reacting Mixing LayersShivakanth Chary, P January 2017 (has links) (PDF)
We develop a physics-based reduced-order model of the aero-acoustic sound sources in reacting mixing layers as a method for fast and accurate predictions of the radiated sound. Instabilities in low-speed mixing layers are known to be dominated by the traditional Kelvin–Helmholtz (K–H)-type “central” mode, which is expected to be superseded by the “outer” modes as the chemical-reaction-based heat-release modifies the mean density, yielding new peaks in the density-weighted vorticity profiles. Although, these outer modes are known to be of lesser importance in the near-field mixing, how these radiate to the far-field is uncertain, on which we focus primarily, when the mixing layer is supersonic, but also report subsonic cases. On keeping the flow compressibility fixed, the outer modes are realized via biasing the respective mean density of the fast (oxidizer) or slow (fuel) side. In the linearized model that we use, the mean flow are laminar solutions of two-dimensional compressible boundary layers with an imposed composite turbulent spread rate, which we show to correctly predict the growth of instability waves by saturating them earlier, similar to in non-linear calculations, but obtained here via solving the linear parabolized stability equations (PSE). The chemical reaction is modeled via a single-step, single-product overall process which introduces a heat release term in the mean temperature equation. As the flow parameters are varied, modes that are unstable on the slow side are shown to be more sensitive to heat release, potentially exceeding equivalent central modes, as these modes yield relatively compact sound sources with lesser spreading of the mixing layer, when compared to the corresponding fast modes. In contrast, the radiated sound, obtained directly from the PSE solutions, seems to be relatively unaffected by a variation of mixture equivalence ratio, except for a lean mixture which is shown to yield a pronounced effect on the slow mode radiation by reducing its modal growth. For subsonic mixing layers, the sensitivity of central mode is explored, which in addition requires an acoustic analogy based method (e.g. the Lilley–Goldstein equations) to predict the sound from the linearized PSE sources, as used here, unlike in supersonic cases.
|
5 |
Stability analysis and transition prediction of wall-bounded flowsLevin, Ori January 2003 (has links)
Disturbances introduced in wall-bounded .ows can grow andlead to transition from laminar to turbulent .ow. In order toreduce losses or enhance mixing in energy systems, afundamental understanding of the .ow stability is important. Inlow disturbance environments, the typical path to transition isan exponential growth of modal waves. On the other hand, inlarge disturbance environments, such as in the presence of highlevels of free-stream turbulence or surface roughness,algebraic growth of non-modal streaks can lead to transition.In the present work, the stability of wall-bounded .ows isinvestigated by means of linear stability equations valid bothfor the exponential and algebraic growth scenario. Anadjoint-based optimization technique is used to optimize thealgebraic growth of streaks. The exponential growth of waves ismaximized in the sense that the envelope of the most ampli.edeigenmode is calculated. Two wall-bounded .ows areinvestigated, the FalknerSkan boundary layer subject tofavorable, adverse and zero pressure gradients and the Blasiuswall jet. For the FalknerSkan boundary layer, theoptimization is carried out over the initial streamwiselocation as well as the spanwise wave number and the angularfrequency. Furthermore, a uni.ed transition-prediction methodbased on available experimental data is suggested. The Blasiuswall jet is matched to the measured .ow in an experimentalwall-jet facility. Linear stability analysis with respect tothe growth of two-dimensional waves and streamwise streaks areperformed and compared to the experiments. The nonlinearinteraction of introduced waves and streaks and the .owstructures preceding the .ow breakdown are investigated bymeans of direct numerical simulations. Descriptors: Boundary layer, wall jet, algebraic growth,exponential growth, lift-up e.ect, streamwise streaks,Tollmien-Schlichting waves, free-stream turbulence, roughnesselement, transition prediction, Parabolized StabilityEquations, Direct Numerical Simulation. / NR 20140805
|
6 |
Étude du rayonnement acoustique d'instabilités hydrodynamiques de jets double-flux par les équations de stabilité parabolisées (PSE) / Acoustics of hydrodynamic instabilities in dual-stream jets using parabolized stability equations (PSE)Léon, Olivier 19 October 2012 (has links)
Dans le but de réduire le bruit de jet, source principale de nuisance sonore au décollage d'un avion, une compréhension fine des mécanismes aéroacoustiques mis en jeu est nécessaire. Les structures cohérentes de grande échelle se développant dans la couche de mélange d'un jet semblent responsables d'une part importante du bruit observé en champ lointain, surtout dans les basses fréquences. Une approche permettant d'étudier ces structures turbulentes est fournie par la théorie de stabilité, notamment au moyen des équations de stabilité parabolisées (PSE). L'étude de ces ondes d'instabilité est alors complémentaire d'autres approches (LES ou expériences), puisqu'elle permet de mettre en évidence la nature et la dynamique de ces structures, également présentes dans les résultats de simulations ou de mesures.Au cours de ces travaux de thèse, nous nous sommes intéressés aux structures cohérentes se développant dans des jets à double flux étudiés au cours du projet européen CoJeN (Coaxial Jet Noise). En particulier, nous avons exploité une base de données issues de mesures de fluctuations de pression réalisées en champ proche et en champ lointain de ces jets. Nous avons alors pu comparer les résultats de notre modélisation PSE à ces mesures en périphérie immédiate du jet, confirmant ainsi la pertinence d’un tel modèle, même dans des configurations aussi complexes. De plus, le calcul du rayonnement acoustique en champ lointain engendré par les fluctuations de pression modélisées nous a permis de faire des comparaisons directes avec les niveaux et les directivités mesurés. Nous avons ainsi pu mettre en évidence quantitativement la contribution de ces structures turbulentes de grande échelle au bruit total rayonné par le jet. / Increasingly stringent aircraft noise regulations require the development of innovative noise reduction strategies. Jet noise is a dominant acoustic component during take-off and a fine understanding of the underlying aeroacoustics mechanisms is then necessary. Large-scale coherent structures that develop in the mixing layer of jets appear to be the dominant acoustic source responsible for the lowfrequency far-field noise observed at low emission angles. A stability analysis based on the parabolized stability equations (PSE) is a suitable tool for studying these coherent structures, revealing the nature and the dynamics of the fluctuations obtained by simulations or experiments. The present work is focused on coherent structures developing in the two mixing layers of dualstream jets studied in the course of the European project CoJeN (Coaxial Jet Noise). In particular, pressure fluctuations measurements acquired in the near and far fields of two coaxial jets have been thoroughly analyzed. A direct comparison of these experimental results with linear PSE calculations has been performed in the vicinity of the jets, referred to as the linear-hydrodynamic region, confirming the relevance of the approach even in such complex industrial configurations. Furthermore, the acoustic projection to the far-field of the wavepackets issued by this model and calibrated in the near-field allows a direct comparison of the acoustic levels and directivity with far field sound measurements. A quantitative assessment of the contribution of the instability waves to the total jet noise measured has therefore been obtained.
|
Page generated in 0.1056 seconds