• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 8
  • 8
  • 8
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stabilisation of roughness particle induced turbulence using laminar flow control suction surfaces

Eustace, Richard January 1999 (has links)
No description available.
2

Further studies on transition and separation on 3-D wings

Paisley, D. J. January 1984 (has links)
No description available.
3

Roughness-induced Transient Growth: Continuous-spectrum Receptivity and Secondary Instability Analysis

Denissen, Nicholas Allen 2011 May 1900 (has links)
This dissertation analyzes the effect of periodic roughness elements on the stability of a flat plate boundary layer. Receptivity data is extracted from direct numerical simulations and experimental data and the results are compared to theoretical predictions. This analysis shows that flow in the immediate vicinity of roughness elements is non-linear; however, the evolution of roughness-induced perturbations is a linear phenomena. New techniques are developed to calculate receptivity information for cases where direct numerical simulations are not yet possible. Additionally, the stability behavior of the roughness wake is analyzed. New instability modes are found, and the effect of boundary layer complexity, perturbation amplitude and other factors are examined. It is shown that the wake is much less stable than optimal perturbation theory predicts, and highlights the importance of receptivity studies. The implication of these results on transition-to-turbulence is discussed, and future work is proposed. T
4

Environmental Influences on Crossflow Instability

Downs, Robert 1982- 14 March 2013 (has links)
The laminar-to-turbulent transition process in swept-wing boundary layers is often dominated by an inflectional instability arising from crossflow. It is now known that freestream turbulence and surface roughness are two of the key disturbance sources in the crossflow instability problem. Recent experimental findings have suggested that freestream turbulence of low intensity (less than 0.2%) may have a larger influence on crossflow instability than was previously thought. The present work involves experimental measurement of stationary and traveling crossflow mode amplitudes in freestream turbulence levels between 0.02% and 0.2%. A 1.83 m chord, 45-degree swept-wing model is used in the Klebanoff-Saric Wind Tunnel to perform these experiments. The turbulence intensity and length scales are documented. Although a significant amount of research on the role of turbulence has been completed at higher turbulence levels, comparatively little has been done at the low levels of the present experiments, which more closely reflect the flight environment. It is found that growth of the traveling crossflow mode is highly dependent on small changes to the freestream turbulence. Additionally, previously studied attenuation of saturated stationary disturbance amplitudes is observed at these low turbulence levels. The extent of laminar flow is also observed to decrease in moderate freestream turbulence.
5

Interaction Between Aerothermally Compliant Structures and Boundary-Layer Transition in Hypersonic Flow

Riley, Zachary Bryce, Riley January 2016 (has links)
No description available.
6

Computational Evaluation of a Transonic Laminar-Flow Wing Glove Design

Roberts, Matthew William 2012 May 1900 (has links)
The aerodynamic benefits of laminar flow have long made it a sought-after attribute in aircraft design. By laminarizing portions of an aircraft, such as the wing or empennage, significant reductions in drag could be achieved, reducing fuel burn rate and increasing range. In addition to environmental benefits, the economic implications of improved fuel efficiency could be substantial due to the upward trend of fuel prices. This is especially true for the commercial aviation industry, where fuel usage is high and fuel expense as a percent of total operating cost is high. Transition from laminar to turbulent flow can be caused by several different transition mechanisms, but the crossflow instability present in swept-wing boundary layers remains the primary obstacle to overcome. One promising technique that could be used to control the crossflow instability is the use of spanwise-periodic discrete roughness elements (DREs). The Flight Research Laboratory (FRL) at Texas A&M University has already shown that an array of DREs can successfully delay transition beyond its natural location in flight at chord Reynolds numbers of 8.0x10^6. The next step is to apply DRE technology at Reynolds numbers between 20x10^6 and 30x10^6, characteristic of transport aircraft. NASA's Environmentally Responsible Aviation Project has sponsored a transonic laminar-flow wing glove experiment further exploring the capabilities of DRE technology. The experiment will be carried out jointly by FRL, the NASA Langley Research Center, and the NASA Dryden Flight Research Center. Upon completion of a wing glove design, a thorough computational evaluation was necessary to determine if the design can meet the experimental requirements. First, representative CAD models of the testbed aircraft and wing glove were created. Next, a computational grid was generated employing these CAD models. Following this step, full-aircraft CFD flowfield calculations were completed at a variety of flight conditions. Finally, these flowfield data were used to perform boundary-layer stability calculations for the wing glove. Based on the results generated by flowfield and stability calculations, conclusions and recommendations regarding design effectiveness were made, providing guidance for the experiment as it moved beyond the design phase.
7

Boundary layer streaks as a novel laminar flow control method

Sattarzadeh Shirvan, Sohrab January 2016 (has links)
A novel laminar flow control based on generation of spanwise mean velocity gradients (SVG) in a flat plate boundary layer is investigated where disturbances of different types are introduced in the wall-bounded shear layer. The experimental investigations are aimed at; (i) generating stable and steady streamwise streaks in the boundary layer which set up spanwise gradients in the mean flow, and (ii) attenuating disturbance energy growth in the streaky boundary layers and hence delaying the onset of turbulence transition. The streamwise streaks generated by four different methods are investigated, which are spanwise arrays of triangular/rectangular miniature vortex generators (MVGs) and roughness elements, non-linear pair of oblique waves, and spanwise-periodic finite discrete suction. For all the investigated methods the boundary layer is modulated into regions of high- and low speed streaks through formation of pairs of counter-rotating streamwise vortices. For the streaky boundary layers generated by the MVGs a parameter study on a wide range of MVG configurations is performed in order to investigate the transient growth of the streaks. A general scaling of the streak amplitudes is found based on empiricism where an integral amplitude definition is proposed for the streaks. The disturbances are introduced as single- and broad band frequency twodimensional Tollmien–Schlichting (TS) waves, and three-dimensional single and a pair of oblique waves. In an attempt to obtain a more realistic configuration compared to previous investigations the disturbances are introduced upstream of the location were streaks are generated. It is shown that the SVG method is efficient in attenuating the growth of disturbance amplitudes in the linear regime for a wide range of frequencies although the disturbances have an initial amplitude response to the generation of the streaks. The attenuation rate of the disturbance amplitude is found to be optimized for an integral streak amplitude of 30% of the free-stream velocity which takes into account the periodic wavelength of the streaky base flow. The stabilizing effect of the streamwise streaks can be extended to the nonlinear regime of disturbances which in turn results in transition to turbulence delay. This results in significant drag reduction when comparing the skin friction coefficient of a laminar- to a turbulent boundary layer. It is also shown that consecutive turbulence transition delay can be obtained by reinforcing the streaky boundary layer in the streamwise direction. For the streaky boundary layer generated by pair of oblique waves their forcing frequency sets the upper limit for the frequency of disturbances beyond which the control fails. / <p>QC 20160208</p>
8

Analysis and control of boundary layer transition on a NACA 0008 wing profile

Sinha Roy, Arijit January 2018 (has links)
The main aim of this thesis was to understand the mechanism behind the classical transition scenario inside the boundary layer over an airfoil and eventually attempting to control this transition utilizing passive devices for transition delay. The initial objective of analyzing the transition phenomenon based on TS wave disturbance growth was conducted at 90 Hz using LDV and CTA measurement techniques at two different angles of attack. This was combined with the studies performed on two other frequencies of 100 and 110 Hz, in order to witness its impact on the neutral stability curve behavior. The challenges faced in the next phase of the thesis while trying to control the transition location, was to understand and encompass the effect of adverse pressure gradient before setting up the passive control devices, which in this case was miniature vortex generators. Consequently, several attempts were made to optimize the parameters of the miniature vortex generators depending upon the streak strength and stability. Finally, for 90 Hz a configuration of miniature vortex generators have been found to successfully stabilize the TS wave disturbances below a certain forcing amplitude, which also led to transition delay.

Page generated in 0.087 seconds