Spelling suggestions: "subject:"sets dde plasma"" "subject:"sets dee plasma""
1 |
Étude théorique du jet de plasma supersonique à courant continuJodoin, Bertrand. January 1998 (has links)
Thèses (Ph.D.)--Université de Sherbrooke (Canada), 1998. / Titre de l'écran-titre (visionné le 20 juin 2006). Publié aussi en version papier.
|
2 |
Diagnostic study of low pressure supersonic DC plasma jets by emission spectroscopy and enthalphy probe techniques Diagnostic d'un jet de plasma DC supersonique par les techniques de la spectroscopie d'émission et de la sonde enthalpique.Rajabian, Mahmoud. January 2001 (has links)
Thèses (Ph.D.)--Université de Sherbrooke (Canada), 2001. / Titre de l'écran-titre (visionné le 20 juin 2006). Publié aussi en version papier.
|
3 |
Diagnostic du jet de plasma H. F. supersoniqueLéveillé, Valérie. January 2002 (has links)
Thèses (M.Sc.A.)--Université de Sherbrooke (Canada), 2002. / Titre de l'écran-titre (visionné le 20 juin 2006). Publié aussi en version papier.
|
4 |
Étude d'un plasma à couplage inductif (I.C.P.), 27 mhz : et application à l'analyse multiélémentaire par spectométrie d'émission d'ultra-violet d'échantillons géologiques /Labarraque, Guillaume. January 1984 (has links)
Th. 3e cycle--Chimie analytique--Paris VI. / Bibliogr. p. 177-180.
|
5 |
Développement de traitements du bois ignifugeants pour le bois d'intérieurSoula, Marie 13 December 2023 (has links)
Thèse en cotutelle, doctorat en génie du bois et des matériaux biosourcés : Université Laval, Québec, Canada Philosophiæ doctor (Ph. D.) et E Cen Lille Villeneuve d'Ascq, France / Le bois est un matériau composite naturel utilisé, entre autres, dans la finition d'intérieur comme couvre-plancher. Il est apprécié pour son aspect, sa disponibilité et son faible impact environnemental. Cependant, son usage est limité au Canada dans les bâtiments non résidentiels, notamment à cause des risques de propagation des flammes. L'ignifugation du bois regroupe tous les traitements qui lui sont appliqués pour le rendre moins combustible. Les approches traditionnelles d'ignifugation du bois, l'imprégnation et les revêtements, sont consommatrices de matière d'origine fossile et nécessitent parfois l'utilisation de procédés complexes. Afin de réduire l'impact environnemental des traitements, des approches par traitement de surface ont été proposées pour les textiles et ont démontré des résultats très prometteurs. Ces traitements visent à concentrer l'action d'ignifugation à la surface exposée au feu afin de limiter la consommation de matière ainsi que l'impact du traitement sur le matériau et sur l'environnement. Dans le cadre de ce projet, deux traitements de surface ont été étudiés. Tout d'abord, une nouvelle méthode de dépôt de complexes polyélectrolytes a été développée en utilisant l'imprégnation en surface à pression réduite. Les complexes polyélectrolytes ont été lyophilisés dans un premier temps afin d'étudier leurs propriétés. Cette approche nous a permis de mettre en avant l'impact du ratio entre deux polyélectrolytes sur la stabilité thermique du complexe, qui a impacté la performance au feu du bouleau jaune traité (Betula alleghaniensis, Britt). Un faible gain de masse a été identifié comme un facteur limitant la performance au feu et plusieurs approches ont été étudiées pour augmenter celui-ci. La surface du bois a ainsi été activée par délignification et l'ajout d'agents de mouillage dans la solution a augmenté sa mouillabilité. D'autre part, des nanoparticules ont été ajoutées à la formulation, mais les performances n'ont pas été améliorées, les nanoparticules modifiant le mode d'action des complexes polyélectrolytes. En ce qui concerne la seconde approche, le traitement de surface par dépôt plasma jet atmosphérique a été étudié. Plusieurs précurseurs ont été déposés sur de l'érable à sucre (Acer saccharum, Marsh.) et sur de l'érable à sucre préalablement traité avec un primaire d'adhésion photopolymérisé. Cette comparaison a mis en avant l'importance de la préparation de la surface de dépôt sur la performance au feu obtenue. Lorsque les échantillons sont préparés avec un primaire d'adhésion photopolymérisé, un dépôt homogène est obtenu par plasma et ce dernier présente un effet de synergie en ce qui concerne le comportement au feu. / Wood is a natural composite material used in interior finishing as flooring. It is appreciated for its appearance, availability, and low environmental impact. However, its use is limited in non-residential construction because of the risk of fire propagation. Fireproofing of wood considers all treatments applied to wood to make it less combustible. Traditional approaches to fireproof wood, such as impregnation, are fossil fuel, energy, and time consuming. Surface treatment approaches have been proposed for textiles and have shown very promising results limiting the amount of used chemicals and thus its impact on the environment. Indeed, surface treatments aim at concentrating the fireproofing action on the surface exposed to the fire. In this project, two surface treatments were studied. First, a new method for the deposition of polyelectrolyte complexes was developed using surface impregnation at reduced pressure. The performance of a polyelectrolyte deposit was studied on the freeze-dried polyelectrolyte complexes. This approach allowed us to highlight the effect of the ratio between two polyelectrolytes on the fire performance of yellow birch (Betula alleghaniensis, Britt). Mass gain was identified as a limiting factor to improve the fire performance and several approaches were studied to increase it either by activating the wood surface by delignification or by increasing the wettability of the solution by adding wetting agents. Nanoparticles have also been added to the formulation, but no improvement of the fire performance was noticed. As a second approach, surface treatment by atmospheric jet plasma deposition has been studied. Several precursors were deposited on sugar maple (Acer saccharum, Marsh.) virgin or pretreated with a photopolymerized primer. This comparison highlighted the importance of the preparation method of the substrate in fire performance. Better performance was obtained on samples pretreated with a light-cured primer since in that case a homogenous deposit was obtained and could act as a fire protective barrier.
|
6 |
Etude et optimisation d'une décharge "Plasma Gun" à pression atmosphérique, pour des applications biomédicales / Characterization of an atmospheric pressure pulsed plasma gun for biomedical applicationsSarron, Vanessa 16 December 2013 (has links)
L’utilisation de plasmas, qu’ils soient thermiques ou basse pression, dans le domaine biomédical remonte aux années 1970. Au cours de ces dernières années, les développements concernant des jets de plasma froid à pression atmosphérique, ont permis un élargissement des domaines d’applications biomédicales des plasmas. Au sein du GREMI, un type de jet de plasma a été développé : le Plasma Gun. Le plasma généré par le Plasma Gun se propage sur de longues distances à l’intérieur de capillaires. L’optimisation des traitements visés nécessite une étude approfondie des décharges créées par le Plasma Gun. La caractérisation du Plasma Gun a mis en évidence la génération de Pulsed Atmospheric pressure Plasma Streams ou PAPS, ces derniers se propageant du réacteur jusque dans l’air ambiant où ils génèrent une plume plasma. Ces PAPS présentent deux modes de propagation, au cours desquels une connexion entre le front d’ionisation et le réacteur est présente en permanence. Ces deux modes nommés respectivement Wall-hugging et Homogène, diffèrent principalement par la morphologie et la vitesse de propagation des PAPS qui leur sont associés. Chacun de ces modes présentent donc des caractéristiques qui leur sont propres mais certaines propriétés de propagation leur sont communes, telles que la possibilité de division ou de réunion de PAPS, ainsi que du transfert de PAPS à travers une barrière diélectrique ou via un capillaire métallique creux. L’étude de la plume plasma, propagation des PAPS dans l’air ambiant, a souligné l’importance de la longueur des capillaires sur la longueur du jet plasma. De plus, la génération du plasma a une très forte influence sur l’écoulement du gaz et la structuration du jet lors de son expansion dans l’air. / The use of plasmas, thermic or low pressure, in biomedical goes back up to 1970s. During these last years, atmospheric pressure cold plasma jets have been developed, allowed an increase of biomedical applications of plasmas. In GREMI, a plasma jet was developed : the Plasma Gun (PG). The plasma generated by the PG propagates on long distances inside capillaries. The optimization of the aimed treatments requires a detailed study of the discharges created by the PG. The characterization of the PG highlights the generation of Pulsed Atmospheric pressure Plasma Streams or PAPS, these last ones propagating from the reactor to the capillary outlet (ambient air) where they generate a plasma plume. These PAPS present two propagation modes, during which a connection between the ionization front and the reactor is present permanently. These two modes named respectively Wall-hugging and Homogeneous, differ mainly by the morphology and their propagation velocity. These modes have common characteristics, such as the possibility of division or meeting of PAPS, as well as the transfer of PAPS through a dielectric barrier or via a hollow metal capillary. The study of the plasma plume underlined the importance of the length of capillaries on the length of the plasma jet. Furthermore, the generation of the plasma has a very strong influence on the gas flow and the jet structuration during air expansion.
|
7 |
Diagnostics spectroscopiques de plasmas d'argon à la pression atmosphérique en présence d'espèces réactivesDurocher-Jean, Antoine 03 1900 (has links)
Les travaux réalisés dans le cadre de cette thèse de doctorat caractérisent de manière cohérente la physique des plasmas d'argon à la pression atmosphérique en présence d'espèces réactives. Ces travaux sont motivés par les lacunes manifestes de la compréhension des plasmas froids à la pression atmosphérique, celles-ci étant en grande partie dues au nombre restreint de techniques de diagnostic permettant de les caractériser. Dans ce contexte, des diagnostics optiques permettant l'obtention des propriétés fondamentales (température du gaz et des électrons, densité d'états excités) sont d'abord développés et validés tant pour les plasmas microonde que pour les décharges à barrière diélectriques d'argon à la pression atmosphérique. En particulier, une méthode couplant des mesures d'émission optique des transitions 2p-1s de l'argon à un modèle collisionnel-radiatif décrivant la population des niveaux émetteurs 2p permettant d'obtenir la température des électrons est présentée, de même qu'un moyen d'obtenir la température du gaz à l'aide de mesures d'élargissement spectral de raies et la densité d'états métastables de l'argon à l'aide de mesures de spectroscopie d'absorption par diode laser accordable en longueur d'onde. Par la suite, ces diagnostics optiques sont employés pour étudier l'influence de l'ajout de gaz diatomiques dans un plasma microonde, mettant en évidence l'efficacité avec laquelle ils en viennent à dominer la cinétique de la décharge en absorbant la majorité de la puissance fournie au plasma. Une comparaison entre le bilan de puissance des électrons qu'ils permettent de calculer à celui d'un diagnostic électrique est également effectué dans le cas d'une décharge à barrière diélectrique d'argon en présence de précurseurs d'anhydrides. Finalement, les propriétés fondamentales de deux conffgurations de jets de plasmas s'écoulant dans l'air ambiant, l'une radiofréquence, l'autre microonde, sont également examinées. Dans le premier cas, les effets de l'air ambiant sur ces propriétés sont mis de l'avant, alors que dans le second cas, la position d'injection du précurseur organosilicié HMDSO dans le jet de plasma est évaluée pour le dépôt de revêtements fonctionnels sur des substrats de verre. Ces derniers travaux révèlent l'obtention d'un revêtement antibuée dans des conditions opératoires spécifiques, un résultat fort prometteur pour l'industrie du verre. / The research done in this Ph.D. thesis consistently characterizes the physics of argon plasmas at atmospheric pressure in the presence of reactive species. This work is motivated by the obvious deficiencies in the understanding of cold plasmas at atmospheric pressure, which are largely due to the limited number of diagnostic techniques used to characterize them. In this context, optical diagnostics allowing the obtaining of fundamental properties (gas and electron temperature, number density of excited species) are first developed and validated in a microwave argon plasma as well as in a dielectric barrier discharge in argon at atmospheric pressure. In particular, a method coupling optical emission measurements of argon 2p-1s transitions to collisional-radiative modelling of the emitting 2p levels is presented in order to get the electron temperature, as well as a means to obtain the gas temperature by the spectral broadening of emission lines and the number density of argon metastable states from tunable laser diode absorption spectroscopy measurements. Subsequently, these optical diagnostics are used to study the influence adding diatomic gases in microwave argon plasmas, highlighting the efficiency with which they start dominating the discharge kinetics by absorbing most of the supplied power. A comparison between the electron power balance calculated from such optical diagnostics to that obtained from electrical diagnostics is also made in the case of an argon-based dielectric barrier discharge with anhydride precursors. Finally, the fundamental properties of two plasmas jet configurations (one radiofrequency, the other microwave) expanding in ambient air are also examined. In the first case, the effects of ambient air on these properties are featured, while in the second case, the injection position of the organosilicon precursor HMDSO in the plasma jet is studied for the deposition of functionnal coatings on glass substrates. The latter reveals the obtaining of an antifog coating under specific operating conditions, a very promising result for the glass industry.
|
Page generated in 0.0793 seconds