• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 5
  • 2
  • 2
  • 1
  • Tagged with
  • 34
  • 23
  • 12
  • 9
  • 9
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Experimental and analytical investigation of ponding load effects on a steel joist roof system /

Stark, Duncan. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2009. / Printout. Includes bibliographical references (leaves 133-138). Also available on the World Wide Web.
22

Shear wall tests and finite element analysis of cold-formed steel structural members

Vora, Hitesh. Yu, Cheng, January 2008 (has links)
Thesis (M.S.)--University of North Texas, Dec., 2008. / Title from title page display. Includes bibliographical references.
23

Elastic-plastic finite element modeling of long span composite joists with incomplete interaction

Nguyen, Son T. 06 October 2009 (has links)
This thesis presents elastic-plastic finite element analyses of seven long span composite open-web steel joists. These analyses account for the incomplete interaction between the concrete slab and the steel joist by modeling the nonlinear behavior of the steel shear connectors. Experimental tests on long span composite open-web steel joists were performed at Virginia Polytechnic Institute and State University. Measurements of joist deflections, member strains, and slip between the concrete slab and steel joist were recorded. The response of the finite element models agree reasonably well with the response of the test prototypes where the shear connector position was known. The finite element model can be generated on any general purpose finite element program that includes beam elements and nonlinear spring elements. The finite element model can give reasonable predictions of deflections and ultimate load capacity of a composite open-web steel joist. / Master of Science
24

Floor Vibrations: Girder Effective Moment of Inertia and Cost Study

Warmoth, Francis James 14 February 2002 (has links)
Studies on the effective moment of inertia of girders that support concrete slabs using joist seats as the horizontal shear connections, and a cost efficiency analysis comparing composite and non-composite floor systems that meet vibrations design standards, were conducted. The first study was undertaken because over-prediction of girder effective moment of inertia was the suspected cause of several recent vibration problems in floors supported by widely spaced LH-series joists. Eight purpose-built floors of the type in question were subjected to experimental tests of girder effective moment of inertia and girder frequency. Frequencies were tested for two live loading cases. Three separate test configurations were made with each floor by changing the seat-to-girder connections between bolted, welded, and reinforced. In the study, 1) the accuracy of the current design practice is assessed, 2) a new relationship was proposed, and 3) suggestions for finite element modeling are made. In recent years, composite construction has been used to improve cost efficiency by reducing structural weight and in some cases by reducing story height. However, vibration problems are a design consideration in composite floors because lighter floors tend to be more lively. It is not clear if cost savings can be made with composite construction if vibrations are considered in the design. To compare the cost of composite and non-composite floors that satisfy AISC/CISC Design Guide criterion for walking excitation, four typical size bays were analyzed using commercial design software that finds the least expensive member configuration for a given bay size. All acceptable bay configurations of member sizes and spacing were evaluated for least non-composite and composite costs, then these results were compared. The findings show that composite construction can be more economical when initial dead load deflections do not control the design. / Master of Science
25

Strength and Performance of Fiber-Reinforced Concrete Composite Slabs

Guirola, Marcela Renee 23 October 2001 (has links)
The purpose of this research is to evaluate and compare the influence of four types of secondary reinforcement on various component strengths related to composite slabs. These components include the composite slab strength under uniform load, the strength of two types of shear connectors used with composite beams and joists, composite slab strength due to a concentrated load, and the flexural toughness and first-crack strength of fiber-reinforced concrete using ASTM C1018 (1998) standard test. The performance of the specimens reinforced with fibers are compared with that of the specimens reinforced with welded-wire fabric (WWF), with the purpose of determining if fiber-reinforced concrete can be used as an alternative to WWF. / Master of Science
26

Přepočet a variantní návrh ocelové konstrukce administrativní budovy JmP Brno - Radlas / Static verification and variant design of steel structure of administrative building of Gasworks in Brno - Radlas

Štulrajterová, Terézia January 2016 (has links)
The subject of this master´s thesis is a recalculation of the existing structure, design, static analysis and economic comparison of two variants of this bearing structure of the administrative building Jihomoravská plynárenská located in Brno. Ground plan dimensions and height of both these variants are based on existing disposition of the building. The diameter of the circular floor plan is 16,088 m and height of the structure is 29,46 m. With this new proposal of solution A and B, lower weight of structure in comparison to the existing state has been reached. Both variants have a bearing column in the middle of floor plan and new solution of ceiling structure. The most advantageous from the economic and assembly point of view is variant B. Design of this variant was processed in detail.
27

A Framework for Cyclic Simulation of Thin-Walled  Cold-Formed Steel Members in Structural Systems

Padilla-Llano, David Alberto 03 June 2015 (has links)
The objective of this research is to create a computationally efficient seismic analysis framework for cold-formed steel (CFS) framed-buildings supported by hysteretic nonlinear models for CFS members and screw-fastened connections. Design of CFS structures subjected to lateral seismic forces traditionally relies on the strength of subassemblies subjected to lateral loading of systems, such as strapped/sheathed shear walls and diaphragms, to provide adequate protection against collapse. Enabling performance-based seismic design of CFS buildings requires computationally efficient and accurate modeling tools that predict the nonlinear cyclic behavior of CFS buildings, the individual CFS components and connections. Such models should capture the energy dissipation and damage due to buckling and cross-sectional deformations in thin-walled CFS components subjected to cyclic loads such as those induced by earthquakes. Likewise, models for screw-fastened CFS connections should capture the energy dissipation and damage due to tilting, bearing, or screw shear when subjected to cyclic loading. In this dissertation, an analysis framework for CFS structures that captures the nonlinear cyclic behavior of critical components including axial members, flexural members, and screw fastened connections is presented. A modeling approach to simulate thin-walled behavior in CFS members is introduced where parameters were developed using results from an experimental program that investigated the cyclic behavior and energy dissipation in CFS axial members and flexural members. Energy dissipation and cyclic behavior of CFS members were characterized for members experiencing global, distortional and local buckling. Cyclic behavior and energy dissipation in thin steel plates and members was further investigated through finite element analysis in ABAQUS to provide a strategy for modeling steel columns cyclic behavior including local buckling. Model parameters were developed as generalized functions of the hysteretic energy dissipated and slenderness. The capabilities of the analysis framework are demonstrated through simulations of CFS wood sheathed shear wall cyclic responses validated with experimental results from full scale shear wall tests. / Ph. D.
28

Framtagning av spännviddstabell för ribbdäcksbjälklag

Samsvik, Jonas, Norén, Adam January 2019 (has links)
Examensarbetets syfte är att finna en beräkningsgång för ribbdäcksbjälklag så att en spännviddstabell kan skapas. Ett ribbdäcksbjälklag består av stående limträbalkar med en liggande KL-träskiva ovan som fungerar som golv. I detta examenarbete är KL-träskivan 2,4 meter bred och vilar på två limträbalkar. Full samverkan mellan de olika materialen råder. Idag finns det några aktörer på marknaden som levererar liknande typer av bjälklag men det finns ingen beräkningsgång preciserad i Eurokod. Förstudien till examensarbetet har visat på att tillvägagångssättet för att lösa den mest problematiska beräkningen har varit densamma för de företagen vi har kollat på. Svårigheten är att beräkna den effektiva bredden för tvärsnittet. Det finns även olika standarder som gäller för hur stor nedböjningen får vara för ett bjälklag. I examensarbetet utförs beräkningar för att uppfylla de krav som gäller i Sverige samt de krav som gäller i Österrike. Detta görs för att dalamissivträ misstänker att kraven på de österrikiska bjälklagen är högre ställda med avseende på svikt, de vill kunna erbjuda ett styvare bjälklag. I tabellen ska dimensioner anges för att respektive krav ska uppfyllas. De österrikiska kraven har visat sig vara hårdare ställda jämfört med de svenska och kommer därför att kräva en balk av större dimension i de lägre lastfallen. I fallen med större laster kommer balkdimensionerna mellan de olika lastfallen inte att skilja sig. Där har det visast sig att branddimensioneringen varit helt dimensionerande. Tabellen ska vara ett hjälpmedel för företaget Dala massivträ att lättare nå ut till beställare. Beräkningsgången har gjorts i Mathcad, där okända parametrar har lösts ut och beräknats fram. Vissa parametrar har varit fasta utifrån Dala massivträs önskemål, så som KL-träskivans tjocklek och ingående komponenters materialegenskaper. När beräkningarna har gjorts har de kontrollerats så att momentkapacitet och tvärkraftskapacitet är tillräcklig i respektive last fall och spännvidd. Nedböjningen har kontrollerats liksom branddimensioneringen. Har bjälklaget inte uppfyllt hållfastighetsdimensionering eller kraven för svenskstandard alternativt österrikiskstandard har en högre dimension valts på limträbalken. Limträbalk har valts utifrån Setra trävarors standardsortiment. Resultatet av beräkningarna har förts in i en spännviddstabell som byggts upp för att enkelt kunna välja balk utifrån tänkt last fall. Beräknings exempel finns redovisat i en bilaga där ett lastfall och en spännvidd redovisas. Resultatet leder till att varje spännvidd och lastfall får två dimensioner, en för att klara svensk standard och en för att klara österrikiskstandard. I diskussionen diskuteras eventuella felkällor, effekten av tätare placering med limträbalkar och orsaken till en differens i jämförelsen mellan Mathcad och Calculatis. Även resultatet i spännviddstabellen diskuteras. / The purpose of the degree project is to find a calculation path for ribbed deck joists so that a span width table can be created. A ribbed deck joists consists of standing glulam beams with a lying cross laminated timber slab above which functions as a floor. In this thesis, the cross laminated timber board is 2.4 meters wide and rests on two glulam beams. Full cooperation between the different materials prevails. Today, there are some players in the market that deliver these types of floor but there is no calculation rate specified in Eurocode. The preliminary study for the degree project has shown that the approach to solving the most problematic calculation has been the same for the companies we have looked at. The difficulty is to calculate the effective width of the cross section. There are also different standards that apply to how large the deflection may be for a beam. In the thesis work, calculations are performed to meet the requirements that apply in Sweden and the requirements that apply in Austria. Dimensions must be specified in the table for fulfilling the respective requirements. The Austrian requirements have proved to be harder compared to the Swedish ones and will therefore require a beam of greater dimension in the lower load cases. In case with the larger loads, the beam dimensions between the different loads will not differ because it has been shown that the fire has been dimensional. The table should be a tool for the company Dala massivträ to reach the customer more easily. The calculation path has been made in Mathcad, where unknown parameters has been solved and calculated. Some parameters have been fixed based on Dala massivträ´s wishes, such as the thickness of the cross laminated timber board and the material properties of the component parts. Once the calculations have been made, they have been checked so that torque capacity and transverse power capacity are sufficient in the respective load cases and span. The deflection has been checked as well as the fire dimensioning. The flooring has not fulfilled the dimensioning or the requirements for Swedish standard alt. Austrian standard has a higher dimension selected on the glulam beam. Glulam beam has been selected based on Setra's wood products standard range. The result of the calculations has been entered into a span table which has been built up in order to be able to easily select the beam from outside the intended load case. The calculation example is presented in an annex where a load case and a span are reported. The result is that each span and load fall get two dimensions, one to meet the Swedish standard and one to cope with the Austrian standard. In the discussion, is discussed possible sources of error, the effect of denser placement with glulam beams and the cause of a difference in the comparison between Mathcad and Calculatis. The result in the span table is also discussed.
29

Shear Wall Tests and Finite Element Analysis of Cold-Formed Steel Structural Members.

Vora, Hitesh 12 1900 (has links)
The research was focused on the three major structural elements of a typical cold-formed steel building - shear wall, floor joist, and column. Part 1 of the thesis explored wider options in the steel sheet sheathing for shear walls. An experimental research was conducted on 0.030 in and 0.033 in. (2:1 and 4:1 aspect ratios) and 0.027 in. (2:1 aspect ratio) steel sheet shear walls and the results provided nominal shear strengths for the American Iron and Steel Institute Lateral Design Standard. Part 2 of this thesis optimized the web hole profile for a new generation C-joist, and the web crippling strength was analyzed by finite element analysis. The results indicated an average 43% increase of web crippling strength for the new C-joist compared to the normal C-joist without web hole. To improve the structural efficiency of a cold-formed steel column, a new generation sigma (NGS) shaped column section was developed in Part 3 of this thesis. The geometry of NGS was optimized by the elastic and inelastic analysis using finite strip and finite element analysis. The results showed an average increment in axial compression strength for a single NGS section over a C-section was 117% for a 2 ft. long section and 135% for an 8 ft. long section; and for a double NGS section over a C-section was 75% for a 2 ft. long section and 103% for an 8 ft. long section.
30

Design and Behavior of Composite Steel-Concrete Flexural Members with a Focus on Shear Connectors

Mujagic, Ubejd 15 April 2004 (has links)
This study consists of three self-standing parts, each dealing with a different aspect of design of composite steel-concrete flexural members. The first part deals with a new type of shear connection in composite joists. Composite steel-concrete flexural members have increasingly become popular in design and construction of floor systems, structural frames, and bridges. A particularly popular system features composite trusses (joists) that can span large lengths and provide empty web space for installation of typical utility conduits. One of the prominent problems with respect to composite joists has been the installation of welded shear connection due to demanding welding requirements and the need for significant welding equipment at the job site. This part of the study presents a new type of shear connection developed at Virginia Tech— standoff screws. Results of experimental and analytical research are presented, as well as the development of a recommended design methodology. The second part deals with reliability of composite beams. Constant research advances in the field of composite steel-concrete beam design have resulted in numerous enhancements and changes to the American design practice, embodied in the composite construction provisions of the AISC Specification (AISC 1999). Results of a comprehensive reliability study of composite beams are presented. The study considers specification changes since the original reliability study by Galambos et al. (1976), considers a larger database of experimental data, and analyses recent proposals for changes in design of shear connection. Comparison of three different design methods is presented based on a study of 15,064 composite beam cases. A method to consider effect of degree of shear connection on strength reduction factor is proposed. Finally, while basic analysis theories between the two are similar, requirements for determining the strength of composite beams in Eurocode 4 (CEN 1992) and 1999 AISC Specification (AISC 1999) differ in many respects. This is particularly true when considering the design of shear connections. This part of the dissertation explores those differences through a comparative step-by-step discussion of major design aspects, and accompanying numerical example. Several shortcomings of 1999 AISC Specification are identified and adjustments proposed. / Ph. D.

Page generated in 0.042 seconds