• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude du rôle de nouveaux partenaires des cadhérines, les flotillines, dans la formation des jonctions adhérentes / Role of new partners of cadherins, flotillins, in the establishment of adherens junctions

Guillaume, Émilie 26 October 2011 (has links)
Les jonctions adhérentes sont des jonctions intercellulaires essentielles à la morphogenèse et à la maintenance des tissus. Elles reposent sur l'assemblage de grands complexes multiprotéiques aux contacts intercellulaires, centrés sur des protéines transmembranaires appelées cadhérines. Nous avons découvert deux nouveaux partenaires des cadhérines N, E, M, P, R et 11, les flotillines. Nous avons caractérisé leur interaction avec la N-cadhérine et découvert qu'elle était constitutive à la membrane plasmique et vraisemblablement indirecte. Nous avons démontré que les flotillines sont essentielles à la stabilisation des jonctions adhérentes dans des cellules musculaires et épithéliales, ainsi qu'à des processus cellulaires dépendants des jonctions. Nous montrons qu'en effet, les flotillines sont nécessaires à l'interaction des cadhérines avec la p120-caténine, qui inhibe leur internalisation et leur dégradation. Nos expériences suggèrent que les flotillines seraient impliquées dans la formation d'un microdomaine membranaire particulier au niveau de la jonction en cours de maturation, permettant le recrutement de la p120-caténine. / Cadherins are essential in many fundamental processes such as tissue patterning during development and in the maintenance of adult tissue architecture. At regions of cell-cell contact, cadherins assemble into large macromolecular complexes named adherens junctions. Here we identify flotillin 1 and 2 as new partners of several classical cadherins. The interaction between flotillines and N-cadherin is constitutive at the plasma membrane and seems to require an intermediate partner. Knockdown of flotillins had a dramatic effect on N- and E-cadherin recruitment at the adherens junctions in both mesenchymal and epithelial cell types. At the molecular level, we show that flotillins stabilize cadherins at the PM hence allowing the coupling of 120 catenin, one of their main stabilizing partners. Our results suggest that flotillins might scaffold a membrane microdomaine at maturing junctions, allowing the recruitment of p120-catenin.
2

Mécanismes moléculaires responsables des propriétés migratoires des gliomes [Texte imprimé] : rôle et dynamique des jonctions adhérentes dans la migration des astrocytes sains et tumoraux

Peglion, Florent 14 September 2012 (has links) (PDF)
Les gliomes sont les tumeurs cérébrales primitives les plus fréquentes. Dérivant des cellules gliales et majoritairement des astrocytes, les gliomes malins évoluent rapidement et sont associés à un très mauvais pronostic, en partie causé par leur nature invasive. Les cellules de gliomes infiltrent activement le parenchyme cérébral, ce qui leur permet d'échapper aux thérapies focales (chirurgie et radiothérapie), et de donner naissance à de nouveaux foyers tumoraux au voisinage direct ou à distance de la tumeur initiale. En analysant le transcriptome de plus de 130 gliomes de différents grades et en me focalisant uniquement sur les variations d'expression de gènes connus pour être impliqués dans la migration, l'invasion, l'adhérence et la polarité astrocytaire, j'ai mis en évidence une altération des jonctions adhérentes dans les gliomes et suggéré une corrélation inverse entre le niveau de la p120ctn et l'invasivité des gliomes in vitro et in vivo.. En contrôlant une boucle de recyclage inédite de la N-cadhérine dans les cellules en migration, la p120ctn régule spatialement les forces d'adhérence intercellulaire, et assure une migration collective dirigée. L'altération de sa fonction dans les astrocytes sains entraîne une augmentation de la dispersion des cellules, la perturbation de leur directionnalité et in fine une augmentation de leur vitesse de migration ; des caractéristiques identiques aux cellules de gliomes en migration. L'ensemble de ces résultats définit la p120ctn comme une nouvelle cible thérapeutique potentielle pour le traitement des gliomes diffus et comme un potentiel marqueur de l'invasivité des gliomes.
3

Understanding the mechanisms underlying force transmission during epithelial cell division / Analyse des mécanismes moléculaires de transmission des forces mécaniques lors la division cellulaire

Pinheiro, Diana 19 September 2016 (has links)
Au sein d'un tissu épithélial la division cellulaire doit être couplée à la formation de nouvelles jonctions intercellulaires entre les futures cellules-filles, afin de préserver l'intégrité du tissu et maintenir son adhésion et polarité. Chez les vertébrés et les invertébrés, lors de la constriction de l'anneau contractile les jonctions assemblées entre la cellule en division et ses voisines est remodelé. Concomitamment, la myosine non-musculaire II (MyoII) s'accumule dans les cellules voisines y produit la force nécessaire pour juxtaposer les membranes de la cellule en division, définissant ainsi la longueur de la future jonction formée entre les cellules-filles. Dans le cadre de mes travaux de doctorat, j'ai cherché à comprendre les mécanismes moléculaires sous-jacents au dialogue entre les cellules épithéliales pendant la division. J'ai montré que chaque division cellulaire est associée à un processus de mécano-transduction qui contrôle la dynamique de la MyoII dans les cellules voisines. Les forces produites par l'anneau contractile allongent localement la membrane des voisines diluant ainsi la concentration d'E-Cadhérine (E-Cad). En retour, cette réduction locale d'E-Cad, couplée à la contractilité intrinsèque des cellules voisines, génère des flux auto-organisés d'actine et myosine, qui conduisent à l'accumulation de MyoII dans les cellules voisines. En montrant que la cytocinèse épithéliale est une source endogène de contraintes mécaniques, mon travail définit un nouveau mécanisme de mécano-transduction qui coordonne les dynamiques d'actine et myosine dans les cellules en division et leurs voisines, et qui est permet de plus le remodelage des jonctions adhérentes. / During epithelial cytokinesis, the remodelling of adhesive cell-cell contacts between the dividing cell and its neighbours has profound roles in the integrity, the arrangement and morphogenesis of proliferative tissues. In both vertebrates and invertebrates, this remodelling requires the activity of non-muscle Myosin II (MyoII) in the interphasic cells neighbouring the dividing cells. However, the mechanisms coordinating cytokinesis and MyoII activity in the neighbours are unknown. Here, we found that, in the Drosophila notum epithelium, each cell division is associated with a mechano-sensing and transmission event controlling MyoII dynamics in the neighbours. We established that the ring pulling forces promote local junction elongation, resulting in a decrease of E-Cadherin (E-Cad) concentration at the ingressing adherens junction (AJ). In turn, the local reduction of E-Cad concentration and the contractility of the neighbouring cells promote self-organized actomyosin flows, ultimately leading to MyoII accumulation at the base of the ingressing AJ. While mechano-sensing has been extensively studied in the context of AJ reinforcement to stabilize the adhesive cell-cell contacts, we propose an alternative mechano-sensing mechanism able to coordinate actomyosin dynamics between epithelial cells and to sustain AJ remodelling in response to mechanical forces.
4

Remodelage des jonctions sous stress mécanique / Junction remodeling under mechanical forces

Yang, Xinyi 25 September 2017 (has links)
Les changements de forme des cellules épithéliales sont cruciaux pour la morphogenèse embryonnaire. Chez les embryons de C. elegans, l'activité musculaire sous les cellules épidermiques est l'une des deux forces mécaniques qui dirigent ce processus. Cependant, les mécanismes moléculaires détaillés à travers lesquels l'activité musculaire favorise l'allongement polarisé le long de l'axe antérieur / postérieur (A / P) restent à être totalement compris. Ici, en utilisant l'imagerie rapide-3D, on découvre que les embryons tournent après l'activation musculaire et on décrit le schéma local et global de la rotation de l'embryon induite par activité musculaire. En outre, on a observé que les muscles des côtés opposés de l'embryon se contractent alternativement, expliquant les rotations de l'embryon. Par conséquent, les jonctions adhérentes sont étirées le long de la direction A / P pendant les rotations de l'embryon et sont donc sous une tension plus élevée. Nos résultats préliminaires d'imagerie en molécule unique ont montré que plus de E-cadhérine, matériau de jonction, fusionne avec des jonctions orientées A / P quand il y a une tension élevée sur ces jonctions. / Epithelial cell shape changes is essential for embryonic morphogenesis. In C. elegans embryos, muscle activity from underneath epidermal cells is one of the two mechanical force inputs driving this process. However, the detailed molecular mechanisms through which muscle activity promotes the polarized elongation along the anterior/posterior (A/P) axis remains to be fully understood. Here, using fast-3D imaging, we discover that embryos rotate after muscle activation and we describe the local and global pattern of embryo rotation induced by muscle activity. Furthermore, we observed that muscles located on opposite sides of the embryo mostly contract alternatively, accounting for embryo rotations. As a consequence, adherens junctions get stretched along the A/P direction during embryo rotations and therefore are under higher tension. Our preliminary results from single molecule imaging showed that more junction material E-cadherin fuses with A/P oriented junctions when there is high tension on these junctions.
5

Characterization of p120-catenin, a novel RSK substrate in the Ras/MAPK signalling pathway

Gao, Beichen 04 1900 (has links)
La voie de signalisation Ras/mitogen-activated protein kinase (Ras/MAPK) occupe un rôle central dans la régulation de différents processus biologiques tels que la croissance, la survie mais aussi la prolifération cellulaire. En réponse à des signaux extracellulaires, cette voie de signalisation mène à l’activation des protéines ERK1/2, impliquées dans l’activation de nombreux substrats cellulaires dont les protéines kinases RSK (p90 ribosomal S6 kinase). Ces protéines kinases sont, entre autres, impliquées dans l’invasion et la migration cellulaire mais les mécanismes responsables de ces phénomènes biologiques restent inconnus à ce jour. Dans mon mémoire, je développe tout d’abord les travaux précédemment réalisés dans notre laboratoire, et identifie la protéine p120-Catenin (p120ctn), un composant majeur des jonctions adhérentes (AJ), comme un nouveau substrat de la voie Ras/MAPK. En utilisant notamment un anticorps phospho-spécificique, nous avons pu démontrer que p120ctn est phosphorylée sur la sérine 320, un nouveau site de phosphorylation, d’une manière dépendante des kinases RSK. D’autre part, nous avons trouvé que la signalisation Ras/MAPK réduit l’interaction entre les protéines p120ctn et N-cadhérine. Ainsi, nos observations suggèrent que l’activation de la voie Ras/MAPK est impliquée dans la diminution de l’adhérence entre cellules par la déstabilisation des AJ. Compte tenu du rôle primordial de la voie de signalisation Ras/MAPK dans le cancer, ce mécanisme nouvellement décrit pourrait contribuer à l’avancement des connaissances sur le développement des cancers dépendents de cette voie de signalisation. / The Ras/MAPK (mitogen-activated protein kinase) signalling pathway is vital in regulating cell growth, survival and proliferation in response to extracellular signals. Positioned downstream in the pathway, the p90 ribosomal S6 kinase (RSK) family regulates cell invasion by weakening cell-cell adhesion, but the mechanisms involved remain elusive. In this thesis, I expand upon previous work performed in our lab and identify p120ctn, a major component of adherens junctions (AJ), as a new substrate of the Ras/MAPK pathway. Using a phospho-specific antibody, we demonstrate that p120ctn is phosphorylated on a new phosphorylation site on S320 upon activation of MAPK signalling in a RSK-dependent manner. Furthermore, we show that Ras/MAPK signaling reduces p120ctn binding to N-cadherin, suggesting a new mechanism by which MAPK activity decreases cell-cell adhesion by destabilizing AJs. Finally, we designed and optimized two individual assays to be used in future experiments examining the effects of Ras/MAPK signalling on AJ function. Taken together, our data identifies RSK as a regulator of p120ctn phosphorylation, and also implicates Ras/MAPK signalling in regulating cell-cell adhesion by destabilizing AJ through p120ctn. Given the role of Ras/MAPK signalling in cancer, this new mechanism may play a role in the development and progression of Ras-driven cancers.

Page generated in 0.1316 seconds