• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisations électriques et analyse de la méthode "Transition Voltage Spectroscopy" sur les jonctions moléculaires à base de molécules alkyles / Electrical characterizations and analyzes of the "Transition Voltage Spectroscopy" method on molecular junctions based on alkyl molecules

Ricoeur, Guillaume 19 December 2012 (has links)
Nous avons évalué la méthode de "Transition Voltage Spectroscopy" (TVS) pour déterminer le niveau d'énergie des orbitales moléculaires impliquées dans le transport électronique (ou hauteur de barrière) à travers une jonction moléculaire (électrode-molécule-électrode). Pour cela, nous avons réalisé un grand nombre de jonctions moléculaires, avec des électrodes de différentes formes (goutte, pointe, couche) et de différents métaux (or, aluminium, mercure, gallium-indium). Nous utilisons pour la partie molécule des jonctions moléculaires des monocouches auto-organisées (SAM) réalisées avec différentes molécules alkyles. Nous montrons que la TVS pour les jonctions moléculaires sans oxyde aux interfaces électrode/molécule, donne des tensions de transition qui correspondent à la queue de la densité d’état des orbitales moléculaires, et non au sommet du pic de la densité d'état. Ce résultat a été obtenu en comparant les résultats TVS avec des mesures d'UPS et d'IPES réalisées sur les mêmes SAMs. Pour les jonctions moléculaires avec au moins une interface électrode/molécule oxydée, nous montrons que la tension de transition correspond au niveau d'énergie de l'oxyde à l’interface et non pas aux orbitales moléculaires de la SAM. Nous avons validé cette hypothèse grâce à des mesures de référence sur des jonctions sans SAM. Nous avons également comparé la TVS avec d'autres méthodes comme le modèle de Simmons, et nous avons étudié l'influence sur la TVS de différents paramètres : la force d'appui par C-AFM, l'asymétrie/symétrie de la jonction et la longueur des molécules. / We assess the performances of the transition voltage spectroscopy (TVS) method to determine the energies of the molecular orbitals involved in the electronic transport (barrier height) through molecular junctions (electrode-molecule-electrode). For this, we made a large number of molecular junctions with electrodes of various shapes (drop, tip, layer) and various metals (gold, aluminum, mercury, gallium-indium). We use for the molecule part of the molecular jonctions self-assembled monolayers (SAMs) made with various alkyl molecules. We show that the transition voltages obtained by TVS for molecular junctions without oxide at the interfaces electrode / molecule correspond to the tail of the density of states of the molecular orbitals, and not to the top of the density of states. This result was obtained by comparing the TVS results with UPS and IPES measurements performed on the same SAM. In the case of molecular junctions with at least one electrode/molecule interface oxidized, we show that the transition voltage corresponds to the energy level of the oxide at the interface and not to the molecular orbital of the SAM. We validated this hypothesis with reference measurements on junctions without SAM. We also compared the TVS with other methods e.g. the Simmons model, and we studied the influence on TVS of various parameters: loading force by C-AFM, junction asymmetry/symmetry and molecule length.
2

Approach to control, protect and switch charge transport through molecular junctions and atomic contact / Approche pour contrôler, protéger ou commuter le transport électronique dans des jonctions moléculaires et contacts atomiques

Ai, Yong 11 October 2016 (has links)
Ces dernières décennies, l'électronique moléculaire a suscité un intérêt croissant. La construction de jonctions métal / molécules / métal est une étape fondamentale dans la compréhension de ce domaine. Nous avons été témoins d’avancées importantes concernant les jonctions moléculaires tant sur le plan théorique que sur le plan expérimental. Cette thèse se concentre principalement sur l'étude du transport de charge à travers les jonctions moléculaires. Des polymères conducteurs et des filaments de cuivre ont été déposés, par électrochimie avec un microscope électrochimique à balayage (SECM), entre une pointe et une électrode substrat. Ainsi, nous avons développé une nouvelle façon de réaliser des contacts atomiques et des jonctions moléculaires permettant de contrôler, d’activer et de protéger ces systèmes.La fabrication de jonctions à grille redox de polymères conducteurs, tel que le PEDOT et le PBT, a été effectuée dans l’intervalle micrométrique séparant les deux électrodes du SECM. Ces nano-jonctions, hautement stables et réversibles, ont montré des conductances de 10-7-10-8 S dans leur état conducteur. Ces résultats, liés à la croissance du polymère, donnent à penser que la conductance de l'ensemble de la jonction est régie par 20 à 100 oligomères.Afin d’obtenir des nano-jonctions de manière contrôlée, une méthode combinant la stratégie dite « Break Junction » (BJ) et le SECM a été mise en place. Une nano-jonction peut être obtenue en éloignant la pointe de sa position initiale. Les variations de conductance obtenues ont montré que des jonctions moléculaires au PEDOT peuvent être brisées par paliers. Des paliers de conductance ont été mesurés par SECM-BJ, et sont comparables à ceux observés par des approches STM-BJ classiques. La technique SECM-BJ s’est avérée efficace pour la fabrication et l’étude de jonctions moléculaires de polymères à grille redox. Le SECM permet également de réaliser des nano-jonctions en utilisant une stratégie d'auto-terminaison. La croissance du polymère peut être arrêtée dès que quelques brins de polymère relient les deux électrodes initialement séparées. La taille de la jonction peut donc être contrôlée par cette méthode. Les jonctions au PTFQ et PFETQ ont montré des propriétés de transport ambipolaires. Lorsque les jonctions sont constituées de plusieurs fibres, un déséquilibre dans le transport est observé entre canaux de type p- et n-. Au contraire, un équilibre est mis en évidence lorsque les jonctions atteignent une taille nanométrique. Nous attribuons cet effet à un mécanisme de transport qui passe d’un régime diffusif (loi d’Ohm) à un régime balistique (quantique) lorsque les dimensions du dispositif deviennent nanométriques.Par ailleurs, le comportement d’électrodes d’ITO avec des nanoparticules d’or (Au NPs/ITO) dénote la présence de plasmons localisés de surface (LSP). Ces substrats ont été utilisés, sous irradiation lumineuse, pour activer la jonction démontrant ainsi que la résonance plasmon peut induire une réduction électrochimique. La diminution de conductance observée peut être attribuée à des électrons chauds générés par les plasmons sur les nanoparticules d’Au piégées dans la jonction de PEDOT, réduisant celui-ci en un état isolant.Enfin, des nano-fils de cuivre ont été élaborés par SECM en utilisant un procédé électrochimique. L’étude du transport a permis de suivre la formation de ces fils entre des électrodes asymétriques. Une étude similaire a été conduite sur une électrode constituée d’un film de silice mésoporeuse sur ITO. Les films ont une épaisseur de 115 nm et les filaments de cuivre sont protégés par encapsulation dans des canaux poreux verticaux d’environ 3 nm de diamètre. / Molecular electronics has attracted increasing interest in the past decades. Constructing metal/molecules/metal junctions is a basic step towards the investigation of molecular electronics. We have witnessed significant development in both experiment and theory in molecular junctions. This thesis focuses mainly on the study of charge transport through molecular junctions. Conducting polymers and copper filaments were electrochemically deposited with a scanning electrochemical microscope (SECM) configuration between a tip and a substrate electrode. In doing so, we have developed a new way to fabricate atomic contact and molecular junctions, and we have explored the possibility to control, protect and switch these systems.Firstly, SECM, where two microelectrodes are located face-to-face separated by a micrometric gap, has been successfully used for the fabrication of redox-gated conducting polymers junctions, such as PEDOT and PBT. Highly stable and reversible redox-gated nano-junctions were obtained with conductance in the 10-7-10-8 S range in their conducting states. These results, associated with the wire-like growth of the polymer, suggest that the conductance of the entire junction in the conductive state is governed by less than 20 to 100 oligomers.Secondly, to obtain the nano-junctions in a controllable way, a break junction strategy combined with the SECM set up is adopted. A nano-junction could be acquired by pulling the tip away from its initial position. And conductance traces showed that PEDOT junctions can be broken step by step before complete breakdown. Similarly as STM-BJ conductance steps were observed on a PEDOT molecular junction before break down by using SECM-BJ. SECM break junction technique proved to be an efficient way of molecular junction fabrication studies, especially for redox gated polymer molecular junctions. Moreover, a self-terminated strategy is found to be another way to obtain nano-junctions. An external resistance connected to the electrode plays an important role in controlling the size of conducting polymer junctions.PFTQ and PFETQ molecular junctions exhibit well-defined ambipolar transport properties. However, an unbalanced charge transport properties in n- and p- channel for these two polymer junctions was observed when the junctions are in the fiber device scale. In contrast, when molecular junction changes into nano-junction, a balanced n- and p-channel transport property is acquired. We propose that such effect is due to charge transport mechanism changing from diffusive (ohm’s law) to ballistic (quantum theory) when the junction size is reduced from fiber devices to nanodevices.High stable Au NPs/ITO electrodes exhibit a well localized surface plasmon (LSP) behavior. These plasmonic substrates have been successfully used to trigger switching of molecular junctions under light irradiation, demonstrating that surface plasmon resonance can induce electrochemical reduction. Such conductance reduction can be attributed to the hot electrons plasmonically generated from gold nanoparticles trapped into the PEDOT junction, resulting in PEDOT being reduced and changed to an insulating state.Finally, copper metallic nanowires were generated using an electrochemical self-terminated method based on SECM configuration. The presence of a few atoms that control the electron transport highlights the formation of metallic nanowires between the asymmetric electrodes. Furthermore, a similar study was performed on mesoporous silica film on ITO used as a substrate electrode. The mesoporous silica films have vertically aligned channels with a diameter of about 3 nm and a thickness of 115 nm, which play a crucial role in protecting the copper filament.
3

First-principles simulations of the interaction of metal-organic molecules with a surface and as building blocks for nanodevices / Etudes par simulations à l'échelle atomique de l'interaction de molécules organométalliques avec une surface et briques élémentaires pour la réalisation de nano-dispositifs

Özdamar, Burak 28 October 2016 (has links)
Ce travail de thèse est focalisé sur l'interaction de molécules organométalliques avec des métaux de transition. Cette thématique a un large éventail d'applications dans plusieurs domaines tels que la réalisation de nanojonctions pour la nano-électronique, la bioimagerie et le stockage d'énergie magnétique, la nano-catalyse et les applications biomédicales. Dans ce cadre général, ce projet de thèse vise la modélisation à l’échelle atomique des interactions fondamentales entre les briques moléculaires afin de comprendre leur rôle dans l’assemblage et la fonctionnalisation des nanostructures. L’outil principal utilisé est la dynamique moléculaire à partir des premiers principes selon les approches Born-Oppenheimer et Car-Parrinello. La première partie de cette thèse présente une rétrospective du domaine afin de donner une vision d’ensemble des méthodes utilisées et de l’état de l’art dans ce domaine. Le deuxième chapitre donne les éléments de base de la théorie et les méthodes qui ont été utilisées dans la thèse, au développement desquels on a aussi contribué pendant ce projet de recherche. Les résultats obtenus et leur discussion critique constituent le corps principal de cette ouvrage de thèse. Ceci est organisé dans un chapitre unique (troisième chapitre), divisé en trois sous-chapitre pour des raisons de clarté. / The purpose of this study is to investigate the interaction of organometallic complexes with transition metals. This topic in question has a broad array of applications in a number of domain; realization of nanojunctions for molecular nanoelectronics, biological imaging and nanocatalysis. Within this general framework, this PhD project aims to model the fundamental interactions of molecular building blocks at the atomic level in order to understand their role in the assembly and functionalization of nanostructures. The principal tool used in this study is first-principles simulation methods such as the Born-Oppenheimer and Car-Parrinello molecular dynamics. The first chapter presents an emphasis of the current developments in the related field alongside of a retrospective on the historical developments that leads today's knowledge. The second chapter presents the basic elements of the theory behind the methods that were used in the thesis, whose development has also been contributed during this research project. Lastly, the third chapter which is organized in three sub-chapters enumerates and describes the results of the various systems studied.Molecular dynamics, constrained dynamics, molecular electronics, molecular junctions, ferrocene, fullerene, metal-organic precursors.
4

Structure électronique et transport dans une jonction moléculaire

Krzeminski, Christophe 30 November 2001 (has links) (PDF)
D'importants progrès ont été réalisés au cours des dernières années pour caractériser le transport électronique dans une jonction constituée de une ou plusieurs molécules. De nombreux candidats de fils et de diodes moléculaires ont été proposés. L'objectif qui a guidé nos travaux est d'améliorer la compréhension des mécanismes de transport dans une jonction moléculaire et de guider la sélection des molécules capables de réaliser des composants électroniques. Nous proposons une méthode simple et rapide de calcul du courant dans une jonction moléculaire à l'aide de la théorie de Landauer exprimée dans un formalisme de fonctions de Green. Afin de calculer la structure électronique de la molécule, nous avons développé une méthode de calcul autocohérente basée sur les liaisons fortes. Nous montrons l'importance de prendre en compte l'influence du champ électrostatique sur la structure électronique de la molécule. Nous appliquons l'ensemble des méthodes que nous avons développées afin d'étudier le transport électronique sur deux types de molécules différentes. Le premier exemple est une famille de fils moléculaires, les thiénylènesvinylènes. Un bon accord a été obtenu entre les calculs de structures électroniques et les différentes caractérisations expérimentales. Nous calculons aussi les caractéristiques électriques de ces fils moléculaires entre deux électrodes d'aluminium et nous mettons en évidence la possibilité d'avoir un effet tunnel résonant. Le second exemple est la molécule C16H33-Q-3CNQ qui est un candidat de diode moléculaire selon le principe d'Aviram et Ratner. En calculant la structure électronique, nous avons montré que le principe d'Aviram et Ratner ne pouvait pas s'appliquer à cette molécule à cause de la délocalisation des états autour de la bande interdite. Nous montrons l'influence de la chaîne aliphatique de la molécule sur les phénomènes de rectification observés et nous discutons l'influence des différents problèmes technologiques (oxyde, diffusion du métal) sur les caractéristiques observées. Enfin, nous analysons l'influence des vibrations et du transport inélastique sur les deux types de jonction moléculaire que nous avons étudiées.

Page generated in 0.0953 seconds