• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 84
  • Tagged with
  • 84
  • 84
  • 82
  • 29
  • 19
  • 16
  • 11
  • 11
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Neutron Spectrometry Techniques for Fusion Plasmas : Instrumentation and Performance

Andersson Sundén, Erik January 2010 (has links)
Neutron are emitted from a deuterium plasma with energies around 2.5 MeV. The neutron spectrum is intimately related to the ion velocity distribution of the plasma. As a consequence, the analysis of neutron energy spectra can give information of the plasma rotation, the ion temperature, heating efficiency and fusion power. The upgraded magnetic proton recoil spectrometer (MPRu), based on the thin-foil technique, is installed at the tokamak JET. The upgrade of the spectrometer was done to allow for measurements of deuterium plasmas. This thesis describes the hardware, the data reduction scheme and the kind of fusion plasma parameters that can be estimated from the data of the MPRu. The MPRu data from 3rd harmonic ion cyclotron resonance and beam heating are studied. Other neutron spectrometer techniques are reviewed as well, in particular in the aspect of suitability for neutron emission spectrometry at ITER. Each spectrometer technique is evaluated using synthetic data which is obtained from standard scenarios of ITER. From this evaluation, we conclude that the thin-foil technique is the best technique to measure, e.g., the ion temperature in terms of time resolution.
72

On measurement and monitoring of reactivity in subcritical reactor systems

Berglöf, Carl January 2010 (has links)
Accelerator-driven systems have been proposed for incineration of transuranic elements from spent nuclear fuel. For safe operation of such facilities, a robust method for reactivity monitoring is required. Experience has shown that the performance of reactivity measurement methods in terms of accuracy and applicability is highly system dependent. Further investigations are needed to increase the knowledge data bank before applying the methods to an industrial facility and to achieve license to operate such a facility. In this thesis, two systems have been subject to investigation of various reactivity measurement methods. Conditions for successful utilization of the methods are presented, based on the experimental experience. In contrast to previous studies in this field, the reactivity has not only been determined, but also monitored based on the so called beam trip methodology which is applicable also to non-zero power systems. The results of this work constitute a part of the knowledge base for the definition of a validated online reactivity monitoring methodology for facilities currently being under development in Europe (XT-ADS and EFIT). / QC 20100621
73

Simulations of silicon detector response in nuclear fission experiments : A study of the plasma delay time in an experiment performed at the Tandem lab

Lekander, Moa Li, Aliyali, Alan January 2020 (has links)
The goal of the project was to simulate a typical silicon detectorresponse in an experiment made at the Tandem lab in Uppsala. The plasma delay time was analyzed by simulating the experiment. Three different models of the plasma delay time were introduced and their effects on time of flight measurements were studied. A continuation of the main goal was to see if the inserted PDT models could be extracted from the simulations when being treated as a pseudo experiment, to see theoverall effectiveness of the experiment. When comparing the final simulations with actual measurements, it was concluded that the main properties of the detector response had been featured and that the simulations were successful. The successful extraction of the inserted plasma delay times and their dependencies on energy also proved that the experiment was a good one. The result of the project was that one of the models seemed to have a strong mass dependence, however with no clear dependence on the energy. The other two models showed a somewhat similar dependence on energy. One of the two models also showed a relatively weak mass dependence.
74

Dynamics of Nuclear Clusters in Neutron Stars / Dynamik hos nukleära kluster i neutronstjärnor

Cheragwandi, Twana January 2024 (has links)
The inner crust of a neutron star is explored, using nuclear models andimplementing them in an open quantum system formalism. The purposeof the investigation is to extract valuable dynamics of the predictednuclear clusters that may exist in this region. We begin by setting up thenuclear models to extract the total energy per particle per system in orderto see if the results are corroborated with the works of others. Thereafter,the single-particle energies of the nuclear clusters are extracted. Theseenergies are then used in the Lindblad formalism to work out the timedependenceof the density matrix, which will allow us to extract thetime-dependence of the average energy of the system in interaction withan environment. / Den inre skorpan hos en neutronstjärna utforskas genom att användakärnmodeller och implementera dem i en öppen kvantumsystemformalism.Syftet med undersökningen är att extrahera värdefulladynamiska egenskaper hos de förutsagda kärnkluster som kan existerai detta område. Vi börjar med att etablera kärnmodeller för att extrahera den totala energin per partikel per system för att se omresultaten överensstämmer med andras arbeten. Därefter extraherade enskilda partikelenergierna hos kärnklusterna. Dessa energieranvänds sedan i Lindblad-formalismen för att beräkna tidsberoendetav densitetsmatrisen, vilket kommer att tillåta oss att extraheratidsberoendet av systemets genomsnittliga energi i interaktion med en miljö.
75

Studies of Nuclear Fuel Performance Using On-site Gamma-ray Spectroscopy and In-pile Measurements

Matsson, Ingvar January 2006 (has links)
<p>Presently there is a clear trend of increasing demands on in-pile performance of nuclear fuel. Higher target burnups, part length rods and various fuel additives are some examples of this trend. Together with an increasing demand from the public for even safer nuclear power utilisation, this implies an increased focus on various experimental, preferably non-destructive, methods to characterise the fuel.</p><p>This thesis focuses on the development and experimental evaluation of such methods. In its first part, the thesis presents a method based on gamma-ray spectroscopy with germanium detectors that have been used at various power reactors in Europe. The aim with these measurements is to provide information about the thermal power distribution within fuel assemblies in order to validate core physics production codes. The early closure of the Barsebäck 1 BWR offered a unique opportunity to perform such validations before complete depletion of burnable absorbers in Gd-rods had taken place. To facilitate the measurements, a completely submersible measuring system, LOKET, was developed allowing for convenient in-pool measurements to be performed.</p><p>In its second part, the thesis describes methods that utilise in-pile measurements. These methods have been used in the Halden test-reactor for determination of fission gas release, pellet-cladding interaction studies and fuel development studies.</p><p>Apart from the power measurements, the LOKET device has been used for fission gas release (FGR) measurements on single fuel rods. The significant reduction in fission gas release in the modern fuel designs, in comparison with older designs, has been demonstrated in a series of experiments. A FGR database covering a wide range of burnup, power histories and fuel designs has been compiled and used for fuel performance analysis. The fission gas release has been measured on fuel rods with average burnups well above 60 MWd/kgU. The comparison between core physics calculations (PHOENIX-4/POLCA-7) and the in-pool measurements of thermal power indicates that the nodal power can generally be predicted with an accuracy within 4% and the bundle power with an accuracy better than 2%, expressed as rms errors.</p><p>In-pile experiments have successfully simulated the conditions that occur in a fuel rod following a primary debris failure, being secondary fuel degradation. It was concluded that massive hydrogen pick-up takes place during the first few days following the primary failure and that a pre-oxidized layer does not function as a barrier towards hydriding in an environment with a very high partial pressure of hydrogen. Another series of in-pile experiments clearly indicate that increased UO<sub>2</sub> grain size is an effective way of suppressing fission gas release in LWR fuel up to the burnup level covered (55 MWd/kgUO<sub>2</sub>).</p>
76

Studies of Nuclear Fuel Performance Using On-site Gamma-ray Spectroscopy and In-pile Measurements

Matsson, Ingvar January 2006 (has links)
Presently there is a clear trend of increasing demands on in-pile performance of nuclear fuel. Higher target burnups, part length rods and various fuel additives are some examples of this trend. Together with an increasing demand from the public for even safer nuclear power utilisation, this implies an increased focus on various experimental, preferably non-destructive, methods to characterise the fuel. This thesis focuses on the development and experimental evaluation of such methods. In its first part, the thesis presents a method based on gamma-ray spectroscopy with germanium detectors that have been used at various power reactors in Europe. The aim with these measurements is to provide information about the thermal power distribution within fuel assemblies in order to validate core physics production codes. The early closure of the Barsebäck 1 BWR offered a unique opportunity to perform such validations before complete depletion of burnable absorbers in Gd-rods had taken place. To facilitate the measurements, a completely submersible measuring system, LOKET, was developed allowing for convenient in-pool measurements to be performed. In its second part, the thesis describes methods that utilise in-pile measurements. These methods have been used in the Halden test-reactor for determination of fission gas release, pellet-cladding interaction studies and fuel development studies. Apart from the power measurements, the LOKET device has been used for fission gas release (FGR) measurements on single fuel rods. The significant reduction in fission gas release in the modern fuel designs, in comparison with older designs, has been demonstrated in a series of experiments. A FGR database covering a wide range of burnup, power histories and fuel designs has been compiled and used for fuel performance analysis. The fission gas release has been measured on fuel rods with average burnups well above 60 MWd/kgU. The comparison between core physics calculations (PHOENIX-4/POLCA-7) and the in-pool measurements of thermal power indicates that the nodal power can generally be predicted with an accuracy within 4% and the bundle power with an accuracy better than 2%, expressed as rms errors. In-pile experiments have successfully simulated the conditions that occur in a fuel rod following a primary debris failure, being secondary fuel degradation. It was concluded that massive hydrogen pick-up takes place during the first few days following the primary failure and that a pre-oxidized layer does not function as a barrier towards hydriding in an environment with a very high partial pressure of hydrogen. Another series of in-pile experiments clearly indicate that increased UO2 grain size is an effective way of suppressing fission gas release in LWR fuel up to the burnup level covered (55 MWd/kgUO2).
77

Neutron Scattering at 96 MeV

Öhrn, Angelica January 2008 (has links)
Data on elastic scattering of 96 MeV neutrons from 56Fe, 89Y and 208Pb in the angular interval 10-70° are presented. The previously published data on 208Pb have been extended, as a new method has been developed to obtain additional information at the most forward angles. The results are compared with phenomenological and microscopic optical potentials. The theory predictions are in general in good agreement with the experimental data. A study of the deviation of the zero-degree cross section from Wick's limit has been performed. The data on 208Pb are in agreement with Wick's limit, while those on lighter nuclei overshoot the limit significantly. A novel analysis method has been developed to obtain the inelastic neutron emission cross sections from the existing 56Fe data. The method is based on folding a trial spectrum with the response of the detector setup. The data cover the angular interval 26-65° and an excitation energy range of 0-45 MeV, ranges hitherto not studied. The results are compared with nuclear model predictions and found to be in good agreement with the experimental data.
78

Fragmentation in Proton-Nucleus Reactions from 100 to 1400 MeV

Jäderström, Henrik January 2008 (has links)
The heaviest fragments, recoils, have been studied in proton and deuteron induced 28Si reactions and proton-20Ne reactions at 100-300 MeV per nucleon. Inclusive charge and angular distributions and coincidences between He nuclei and recoils have been compared to two theoretical models, Dubna Cascade Model and JAERI Quantum Molecular Dynamics. The overall agreement was good for the reactions with 28Si, however the angular distributions of He fragments could not be reproduced. For the 20Ne reactions the recoil angular distributions were only reproduced for large angles. There was a significant underestimation at small angles and low recoil charge. α-clustering in the bombarding nucleus is a possible explanation for the deviations. In the 100 MeV per nucleon reactions all assumptions of the models may not be valid and the agreement was worst for these reactions. In proton-natXe reactions intermediate mass fragments have been studied from 200 to 1400 MeV. Slow ramping was used to scan the energy. Charge distributions and a caloric curve have been compared to Cascade Fragmentation Evaporation Model. Charge distributions showed good agreement for fragments with Z&lt;8 but the heavier fragments were underestimated.
79

Studies of collective phenomena in neutron deficient nuclei : by means of lifetime measurements, angular correlation measurements and the recoil-decay tagging technique

Andgren, Karin January 2008 (has links)
The nucleus is a mesoscopic system that retains features from both the quantum and macroscopic worlds. A basic property of a macroscopic body is its shape. Nuclear shapes can be deduced from experimental data as they influence the excitation mode of the nucleus and hence the energies and lifetimes of its excited levels. Various short-lived nuclei were created in fusion-evaporation experiments performed at international heavy-ion accelerator facilities. The emitted γ rays and, in some experiments, also the charged particles and neutrons emitted in the reactions were detected. The studied neutron-deficient isotopes were either selected by the type and number of particles emitted in the reactions, or by using their characteristic decays. The excited states of the different isotopes were extracted from the γ-ray analyses. Spectroscopic properties, such as the lifetimes of the excited states or the angular distribution of the emitted γ rays were measured when possible. The experimentally obtained level schemes together with the other spectroscopic information were used to deduce the excitation modes and the shapes of the studied nuclei. The detector systems are described in the first chapter and in the second chapter some techniques used to extract information from the experimental data are explained. Finally, a brief theoretical overview on the nuclear models which were used to interpret the experimental results is given. / QC 20100621
80

Collective Structure of Neutron-Rich Rare-Earth Nuclei and Development of Instrumentation for Gamma-Ray Spectroscopy

Söderström, Pär-Anders January 2011 (has links)
Neutron-rich rare-earth nuclei are among the most collective nuclei that can be found in nature. In particular, the doubly mid-shell nucleus 170Dy is expected to be the nucleus where the collective structure is maximized. This has implications for the astrophysical r-process, since it has been suggested that the collectivity maximum plays an important role in the abundances of the rare-earth elements that are created in supernova explosions. In this work, the collective structure of the five nuclei 168,170Dy and 167,168,169Ho are studied and different theoretical models are used to interpret the evolution of collectivity around the mid-shell. In order to produce and study even more neutron-rich nuclei in this mass region, new radioactive ion beam facilities will be a valuable tool. These facilities, however, require advanced instruments to study the weak signals of exotic nuclei in a high background environment. Two of these instruments are the γ-ray tracking spectrometer AGATA and the neutron detector array NEDA. For AGATA to work satisfactorily, the interaction position of the gamma rays must be determined with an accuracy of at least five millimetres. The position resolution is measured in this work using a model independent method based on the Doppler correction capabilities of the detector at two different distances between the detector and the source. For NEDA, one of the critical parameters is its ability to discriminate between neutrons and γ rays. By using digital electronics it is possible to employ advanced and efficient algorithms for pulse-shape discrimination. In this work, digital versions of the common analogue methods are shownto give as good, or better, results compared to the ones obtained using analogue electronics. Another method which effectively distinguishes between neutrons and γ rays is based on artificial neural networks. This method is also investigated in this work and is shown to yield even better results.

Page generated in 0.0421 seconds