Spelling suggestions: "subject:"köpprediktering"" "subject:"prediktering""
1 |
Predicting customer purchase behavior within Telecom : How Artificial Intelligence can be collaborated into marketing efforts / Förutspå köpbeteenden inom telekom : Hur Artificiell Intelligens kan användas i marknadsföringsaktiviteterForslund, John, Fahlén, Jesper January 2020 (has links)
This study aims to investigate the implementation of an AI model that predicts customer purchases, in the telecom industry. The thesis also outlines how such an AI model can assist decision-making in marketing strategies. It is concluded that designing the AI model by following a Recurrent Neural Network (RNN) architecture with a Long Short-Term Memory (LSTM) layer, allow for a successful implementation with satisfactory model performances. Stepwise instructions to construct such model is presented in the methodology section of the study. The RNN-LSTM model further serves as an assisting tool for marketers to assess how a consumer’s website behavior affect their purchase behavior over time, in a quantitative way - by observing what the authors refer to as the Customer Purchase Propensity Journey (CPPJ). The firm empirical basis of CPPJ, can help organizations improve their allocation of marketing resources, as well as benefit the organization’s online presence by allowing for personalization of the customer experience. / Denna studie undersöker implementeringen av en AI-modell som förutspår kunders köp, inom telekombranschen. Studien syftar även till att påvisa hur en sådan AI-modell kan understödja beslutsfattande i marknadsföringsstrategier. Genom att designa AI-modellen med en Recurrent Neural Network (RNN) arkitektur med ett Long Short-Term Memory (LSTM) lager, drar studien slutsatsen att en sådan design möjliggör en framgångsrik implementering med tillfredsställande modellprestation. Instruktioner erhålls stegvis för att konstruera modellen i studiens metodikavsnitt. RNN-LSTM-modellen kan med fördel användas som ett hjälpande verktyg till marknadsförare för att bedöma hur en kunds beteendemönster på en hemsida påverkar deras köpbeteende över tiden, på ett kvantitativt sätt - genom att observera det ramverk som författarna kallar för Kundköpbenägenhetsresan, på engelska Customer Purchase Propensity Journey (CPPJ). Den empiriska grunden av CPPJ kan hjälpa organisationer att förbättra allokeringen av marknadsföringsresurser, samt gynna deras digitala närvaro genom att möjliggöra mer relevant personalisering i kundupplevelsen.
|
Page generated in 0.0943 seconds