21 |
Extensões conexas e espaços de Banach C(K) com poucos operadores / Connected extensions and Banach spaces C(K) with few operatorsBarbeiro, André Santoleri Villa 26 March 2018 (has links)
Este trabalho tem dois objetivos principais. Primeiramente, analisamos a preservação de conexidade na extensão de espaços compactos por funções contínuas, técnica utilizada por Koszmider para obter $C(K)$ indecomponível com poucos operadores. Mostramos que para todo compacto metrizável $K$ existe um desconexo $L$ que é obtido a partir de $K$ por uma quantidade finita de extensões por funções contínuas. Em seguida, enfatizamos a construção de espaços de Banach da forma $C(K)$ com poucos operadores, com a propriedade de que $C(L)$ tem poucos operadores, para todo fechado $L \\subseteq K$. Assumindo o princípio diamante construímos uma família $(K_\\xi)_{\\xi < 2^{(2^\\omega)}}$ de espaços conexos e hereditariamente Koszmider tais que todo operador de $C(K_\\xi)$ em $C(K_\\eta)$ é fracamente compacto, para $\\xi$ diferente de $\\eta$. Em particular, $(C(K_\\xi))_{\\xi < 2^{(2^\\omega)}}$ é uma família de espaços de Banach indecomponíveis e dois a dois essencialmente incomparáveis, e cada espaço $K_\\xi$ responde positivamente ao problema de Efimov. Apresentamos também um método de construção via forcing de um espaço compacto e conexo $K$ hereditariamente fracamente Koszmider. / This work has two main objectives. First, we analyze the preservation of connectedness in the extension of compact spaces by continuous functions, a technique used by Koszmider to obtain an indecomposable Banach space $C(K)$ with few operators. We show that for any metrizable compactum $K$ there exists a disconnected $L$ which is obtained from $K$ by finitely many extensions by continuous functions. Next, we emphasize the construction of Banach spaces of the form $C(K)$ with the property that $C(L)$ has few operators, for every closed $L \\subseteq K$. Assuming the diamond principle we construct a family $(K_\\xi)_{\\xi < 2^{(2^\\omega)}}$ of connected and hereditarily Koszmider spaces such that every operator from $C(K_\\xi)$ into $C(K_\\eta)$ is weakly compact, for $\\xi$ different from $\\eta$. In particular, $(C(K_\\xi))_{\\xi < 2^{(2^\\omega)}}$ is a family of indecomposable and pairwise essentially incomparable Banach spaces, and each space $K_\\xi$ responds positively to the Efimov\'s problem. We also present a method of construction using forcing of a compact and connected hereditarily weakly Koszmider space $K$.
|
22 |
Extensões conexas e espaços de Banach C(K) com poucos operadores / Connected extensions and Banach spaces C(K) with few operatorsAndré Santoleri Villa Barbeiro 26 March 2018 (has links)
Este trabalho tem dois objetivos principais. Primeiramente, analisamos a preservação de conexidade na extensão de espaços compactos por funções contínuas, técnica utilizada por Koszmider para obter $C(K)$ indecomponível com poucos operadores. Mostramos que para todo compacto metrizável $K$ existe um desconexo $L$ que é obtido a partir de $K$ por uma quantidade finita de extensões por funções contínuas. Em seguida, enfatizamos a construção de espaços de Banach da forma $C(K)$ com poucos operadores, com a propriedade de que $C(L)$ tem poucos operadores, para todo fechado $L \\subseteq K$. Assumindo o princípio diamante construímos uma família $(K_\\xi)_{\\xi < 2^{(2^\\omega)}}$ de espaços conexos e hereditariamente Koszmider tais que todo operador de $C(K_\\xi)$ em $C(K_\\eta)$ é fracamente compacto, para $\\xi$ diferente de $\\eta$. Em particular, $(C(K_\\xi))_{\\xi < 2^{(2^\\omega)}}$ é uma família de espaços de Banach indecomponíveis e dois a dois essencialmente incomparáveis, e cada espaço $K_\\xi$ responde positivamente ao problema de Efimov. Apresentamos também um método de construção via forcing de um espaço compacto e conexo $K$ hereditariamente fracamente Koszmider. / This work has two main objectives. First, we analyze the preservation of connectedness in the extension of compact spaces by continuous functions, a technique used by Koszmider to obtain an indecomposable Banach space $C(K)$ with few operators. We show that for any metrizable compactum $K$ there exists a disconnected $L$ which is obtained from $K$ by finitely many extensions by continuous functions. Next, we emphasize the construction of Banach spaces of the form $C(K)$ with the property that $C(L)$ has few operators, for every closed $L \\subseteq K$. Assuming the diamond principle we construct a family $(K_\\xi)_{\\xi < 2^{(2^\\omega)}}$ of connected and hereditarily Koszmider spaces such that every operator from $C(K_\\xi)$ into $C(K_\\eta)$ is weakly compact, for $\\xi$ different from $\\eta$. In particular, $(C(K_\\xi))_{\\xi < 2^{(2^\\omega)}}$ is a family of indecomposable and pairwise essentially incomparable Banach spaces, and each space $K_\\xi$ responds positively to the Efimov\'s problem. We also present a method of construction using forcing of a compact and connected hereditarily weakly Koszmider space $K$.
|
23 |
Reconstruction of Accelerated Cardiovascular MRI dataKhalid, Hussnain January 2023 (has links)
Magnetic resonance imaging (MRI), is a noninvasive medical imaging testing techniquewhich is used to produce detailed images of internal structure of the human body, includingbones, muscles, organs, and blood vessels. MRI scanners use large magnets and radiowaves to create images of the body. Cardiac MRI scan helps doctors to detect and monitorcardiac diseases like blood clots, artery blockages, and scar tissue etc. Cardiovasculardisease is a type of disease that affects the heart or the blood vessels.This thesis aims to explore the reconstruction of accelerated cardiovascular MRI datato reconstruct under-sampled MRI data acquired after applying accelerated techniques.The focus of this research is to study and implement deep learning techniques to overcomethe aliasing artifacts caused by accelerated imaging. The results of this study will becompared with fully sampled data acquired with traditional existing techniques such asParallel Imaging (PI) and Compressed Sensing (CS).The primary findings of this study show that the proposed deep learning network caneffectively reconstruct under-sampled cardiovascular MRI data acquired using acceleratedimaging techniques. Many experiments were performed to handle 4D Flow data with limitedmemory for training the network. The network’s performance was found to be comparableto the fully sampled data acquired using traditional imaging techniques such asPI and CS. It is also important to note that this study also aimed to investigate the generalizabilityof the proposed deep learning network, specifically FlowVN, when appliedto different datasets. To explore this aspect, two different models were employed: a pretrainedmodel using previous research data and configurations, and a model trained fromscratch using CMIV data with experiments performed to address limited memory issuesassociated with 4D Flow data.
|
Page generated in 0.0291 seconds