• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the possibility of using organic molecules in the characterization of subsurface processes

Schaffer, Mario 04 April 2013 (has links)
Tracertests stellen heute einen integralen Bestandteil im Repertoire der hydro(geo)logischen Charakterisierungstechniken dar. Insbesondere konservative Stoffe werden zur Bestimmung von hydraulischen Reservoir- und Aquiferparametern eingesetzt. Diese Stoffe verhalten sich weitestgehend inert und unterliegen somit nur vernachlässigbaren physikochemischen Wechselwirkungen während ihrer Verweilzeit im untersuchten Geosystem. Im Gegensatz dazu stellt der Einsatz nicht-konservativer organischer Stoffe als Tracer einen relativ neuen Ansatz dar, welcher das Potential birgt, zusätzliche Informationen zu ablaufenden Untergrundprozessen zu gewinnen, sofern die Wechselwirkungsarten und somit das Tracerverhalten bekannt sind. Folglich ist die genaue Kenntnis potentieller Transportprozesse und deren Abhängigkeiten eine unabdingbare Voraussetzung für eine erfolgreiche Interpretation dieser Tracer. In diesem Zusammenhang ist die Sorption an Festphasen für zahlreiche gelöste organische Verbindungen der wohl bedeutendste physikochemische Transportprozess. Aus diesem Grund ist die systematische Untersuchung von Sorptionsprozessen und deren Abhängigkeiten von den Moleküleigenschaften bzw. Randbedingungen ein Hauptbestandteil der hier vorgestellten, kumulativen Dissertationsschrift. Die aus den Sorptions-untersuchungen abgeleiteten Schlussfolgerungen wurden in die Entwicklung eines neuen, reaktiven Reservoir-Tracers für die geologische Speicherung von CO2 mit einbezogen. Um einen Überblick über das Sorptionsverhalten organischer Verbindungen mit unterschiedlichen Funktionalitäten zu gewinnen, wurde zunächst der pH-abhängige Stofftransport mehrerer dissoziierbarer Arzneimittelwirkstoffe (Säuren, Basen, Zwitter) mit Hilfe von Sedimentsäulenexperimenten untersucht. Hierzu wurden die Sorptionskoeffizienten bestimmt und mit den vorausberechneten Ergebnissen zweier Korrelationsansätze verglichen. Eine starke pH-Abhängigkeit zeigte die Sorption für alle Moleküle mit einem pKS-Wert im oder nahe des untersuchten pH-Bereiches. Eine zufriedenstellende Vorhersage war nur für neutrale und anionsche (saure) Verbindungen möglich. Im Gegensatz dazu war die Sorption der kationischen (basischen) und zwitter-ionischen Verbindungen stärker als erwartet. Als Ursache dafür kann das Auftreten zusätzlicher, elektrostatischer Sorptionsmechanismen angesehen werden, welche in den konventionellen Korrelationsansätzen nicht berücksichtigt werden. Somit konnte unter anderem erwartet werden, dass auch Kationenaustausch einen signifikanten Prozess für die Retardation organischer Kationen im Untergrund darstellt. Mit zwei kationischen Beta-Blockern durchgeführte Säulenversuche belegen die dominierende Rolle von Kationenaustauschprozessen. Steigende Konzentrationen anorganischer Kationen führen aufgrund der verstärkten Konkurrenz um die Austauscherplätze des Sorbens zu einer geringeren Sorption der organischen Kationen. Der Beitrag nicht-hydrophober Wechselwirkungen zur Gesamtsorption konnte mit >99% abgeschätzt werden. Aufgrund der großen Bedeutung von Kationenaustauschprozessen sollten weitere Einflussfaktoren berücksichtigt werden, um den Transport organischer Kationen zuverlässig vorhersagen zu können. Daher wurde anschließend der Einfluss konkurrierender anorganischer Kationen auf die Sorption organischer Kationen in Wasser/Sediment-Batchtests systematisch untersucht. Die bei verschiedenen Hintergrundkonzentrationen an anorganischen Kationen aufgenommenen Sorptionsisothermen des kationischen Beta-Blockers Metoprolol zeigten eine deutlich stärkere Beeinflussung der Sorption durch Ca2+ als durch Na+. Durch die gefundene Korrelation zwischen dem Freundlich-Koeffizienten und der Konzentration anorganischer Kationen wird eine Vorhersage der Metoprolol-Sorption im Bereich der untersuchten Randbedingungen möglich. Zudem konnte der Beitrag sorptiver Wechselwirkungen zum organischen Kohlenstoff des Sediments als vernachlässigbar bestimmt werden. Insgesamt liefern die erzielten Ergebnisse einen weiteren wichtigen Beitrag zur Prozessbeschreibung der Sorption und helfen somit, die Vorhersage des Stofftransportes organischer Kationen im Untergrund zu verbessern. Im letzten Teil der Arbeit werden das Konzept und die Entwicklung eines neuen, reaktiven Tracers (KIS-Tracer) zur Charakterisierung von Grenzflächen während Injektionen von überkritischem CO2 in tiefe salinare Aquifere beschrieben. Durch eine Hydrolysereaktion an der CO2/Wasser-Grenzfläche mit bekannter Kinetik wird ein Zusammenhang zur zeitlichen Änderung der Grenzflächengröße geschaffen. Basierend auf den vorangegangenen Untersuchungen zur Sorption, wurde das konservative, organische Anion Naphthalinsulfonat als Basisstruktur für die Tracersynthese (Veresterung) und somit auch als gewünschtes Hydrolyseprodukt ausgewählt. Neben der Definition notwendiger Tracereigenschaften wurden bereits erste Verbindungen synthetisiert, im Labor getestet und mit einem neuentwickelten, makroskopischen Modell ausgewertet. Abschließend wurde das Tracerverhalten exemplarisch für verschiedene hypothetische Funktionen der zeitlichen Grenzflächenänderung numerisch modelliert. Die bisher erzielten Ergebnisse sind sehr vielversprechend und gewähren einen ersten Einblick in das Potential von KIS-Tracern.
2

Improved tracer techniques for georeservoir applications / Artificial tracer examination identifying experimentally relevant properties and potential metrics for the joint application of hydrolysis tracer and heat injection experiments

Maier, Friedrich 24 October 2014 (has links)
Für eine effiziente und nachhaltige Nutzung von Georeservoiren sind bestmögliche Reservoirmanagementverfahren erforderlich. Oft setzen diese Verfahren auf Tracer-Tests. Dabei enthalten die aufgezeichneten Tracersignale integrale Informationen der Reservoireigenschaften. Tracer-Tests bieten somit eine leistungsfähige Technik zur Charakterisierung und Überwachung der bewirtschafteten Georeservoire. Im Gegensatz zu Tracer-Tests mit konservativen Tracern, welche bereits etablierte Testroutinen zur Verfügung stellen, ist die Verwendung von reaktiven Tracern ein neuer Ansatz. Aufgrund unpassender physikalisch-chemischer Modelle und/oder falschen Annahmen ist die Analyse und Interpretation von reaktiven Tracersignalen jedoch oft verzerrt, fehlinterpretiert oder sogar unmöglich. Reaktive Tracer sind dennoch unersetzbar, da sie durch die gezielte Ausnutzung selektiver und spezifischer Reaktionen mögliche Metriken von Reservoirtestverfahren auf einzigartige Weise erweitern. So liefern reaktive Tracer für ein integriertes Reservoirmanagement geforderten Aussagen über Reservoirmetriken wie z.B. Wärmeaustauschflächen oder in-situ Temperaturen. Um Unsicherheiten bei der Auswertung von Tracerexperimenten zu reduzieren, werden theoretische und experimentelle Untersuchungen zu hydrolysierenden Tracern vorgestellt. Diese Tracer sind durch ihre Reaktion mit Wasser charakterisiert. Einerseits können sie als thermo-sensitive Tracer Informationen über Temperaturen und abgekühlte Anteile eines beprobten Reservoirs liefern. Für die Interpretation von thermo-sensitiven Tracerexperimenten sind die Kenntnis der zugrunde liegenden Reaktionsmechanismen sowie bekannte Arrhenius-Parameter Voraussetzung, um die verwendete Reaktion pseudo erster Ordnung nutzen zu können. Darüber hinaus ermöglichen die verwendeten Verbindungen durch ihre Fluoreszenzeigenschaften eine Online-Messung. Um die Empfindlichkeit und praktischen Grenzen thermo-sensitiver Tracer zu untersuchen, wurden kontrollierte Laborexperimente in einem eigens dafür entwickelten Versuchsaufbau durchgeführt. Dieser besteht aus zwei seriell geschalteten Säulen, die beide mit Sand gefüllt sind und jeweils auf eine eigene Temperatur eingestellt werden können. Somit ist es möglich, verschiedene thermische Einstellungen zu betrachten. Die untersuchten experimentellen Szenarien imitieren größtenteils Feldanwendungen: Durchflussexperimente sowie auch Experimente mit einer Umkehr der Fließrichtung. Darüber hinaus wurde untersucht, ob thermo-sensitive Tracer auch sensitiv gegenüber der Position der Temperaturfront sind. Dabei wurden die Tracer kontinuierlich oder gepulst injiziert. Die Ergebnisse bestätigen die zugrunde liegende Theorie experimentell. Wenn die pH-Abhängigkeit der Hydrolyse bei der Analyse berücksichtigt wird, kann eine Temperaturschätzung mit einer Genauigkeit und Präzision von bis zu 1 K erreicht werden. Die Schätzungen sind von Verweilzeit und gemessenen Konzentrationen unabhängig. Weiterhin lässt sich eine Schätzung über den ausgekühlten Anteil des Systems erhalten. Durch die steuerbaren und definierten Laborbedingungen ist es erstmals möglich, die geforderte Anwendbarkeit von thermo-sensitiven Tracern belastbar nachzuweisen. Des Weiteren wird eine zweite Anwendung hydrolysierender Tracer vorgeschlagen. Beim Lösen von CO2 für „Carbon Capture and Storage“-Anwendungen hängt die Effizienz maßgeblich von der Grenzfläche zwischen CO2 und der Sole in tiefen Reservoiren ab. Somit ist diese Metrik wichtig, um die Effizienz der CO2 Auflösung in Wasser zu bewerten. Die gezielt entwickelten Kinetic-Interface-Senitive-Tracer (KIS-Tracer) nutzen, zusätzlich zur Hydrolyse an der Grenzfläche, die unterschiedlichen Lösungseigenschaften von Tracer und Reaktionsprodukt im entsprechenden Fluid. Somit lassen sich potentiell Aussagen über die Dynamik der Grenzfläche machen. Neben dem grundlegenden Konzept sowie den theoretischen Tracer-Anforderungen wird eine erste Anwendung im Laborexperiment vorgestellt. Diese zeigt das erfolgreiche, zielorientierte Moleküldesign und bietet eine experimentelle Basis für ein makroskopisches numerisches Modell, mit welchem numerische Simulationen verschiedener Testszenarien durchgeführt werden, um das Zusammenspiel von KIS-Tracer und dynamischer Grenzfläche zu untersuchen. Aufgrund der Temperaturabhängigkeit der Reaktionsgeschwindigkeit hydrolysierender Tracer werden in der Regel auch thermische Signale aufgezeichnet. Der letzte Teil prüft die Möglichkeit, Informationen aus den aufgezeichneten Temperaturen zu extrahieren. Für ein idealisiertes Einzelkluftsystem wird eine Reihe von analytischen Lösungen diskutiert. Aus thermischen Injektion-/Entzugsversuchen können damit räumliche und zeitliche Profile abgeleitet werden. Mit der Verwendung von mathematisch effizienten Inversionsverfahren wie der iterativen Laplace-Transformation lassen sich rechentechnisch effiziente Realraum-Lösungen ableiten. Durch die Einführung von drei dimensionslosen Kennzahlen können die berechneten Temperaturprofile auf Bruchbreite oder Wärmetransportrate, wechselnde Injektions-/ Pumpraten und/oder auf in der Nähe beobachtbare räumliche Informationen analysiert werden. Schließlich werden analytische Lösungen als Kernel-Funktionen für nichtlineare Optimierungsalgorithmen vorgestellt. Zusammenfassend bearbeitet die vorliegende Arbeit den Übergang zwischen Tracerauswahl und Traceranwendung. Die Ergebnisse helfen Planungs- und Analyseunsicherheiten zu reduzieren. Dies wird bezüglich der Empfindlichkeit gegenüber Temperaturen, Kühlungsanteilen, flüssig/flüssig-Grenzfläche, Kluftbreite und Wärmetransportrate gezeigt. Somit bieten die vorgestellten Tracerkonzepte neue Metriken zur Verbesserung von Reservoirmanagementverfahren. Die experimentellen Ergebnisse und die neuen analytischen Modelle ermöglichen einen tiefen Einblick in die kollektive Rolle der Parameter, welche die Hydrolyse und den Wärmetransport in Georeservoiren kontrollieren.

Page generated in 0.0361 seconds