Spelling suggestions: "subject:"deep saline aquifer"" "subject:"keep saline aquifer""
1 |
Observations of buoyant plumes in countercurrent displacementHernandez, Angelica Maria 20 February 2012 (has links)
Leakage of stored bulk phase CO₂ is of particular risk to sequestration in deep saline aquifers due to the fact that when injected into typical saline aquifers, the CO₂ rich gas phase has lesser density than the aqueous phase resulting in buoyancy driven flow of the fluids. As the CO₂ migrates upward, the security of its storage depends upon the trapping mechanisms that counteract the migration. While there are a variety of trapping mechanisms the mechanism serving as motivation for this research is local capillary trapping. Local capillary trapping occurs during buoyancy-driven migration of bulk phase CO₂ within a saline aquifer (Saadatpoor, 2009). When the rising CO₂ plume encounters a region where capillary entry pressure is locally larger than average, CO₂ accumulates beneath the region. While research is continued by means of numerical simulation, research at the bench scale is needed to validate the conclusions made from simulation work. Presented is the development of a bench scale experiment whose objective is to assess local capillary trapping. The initial step in accomplishing this objective is to understand the fluid dynamics of CO₂ and brine in a saline aquifer which is categorized as two phase immiscible buoyancy driven displacement. Parameters influencing this displacement include density, viscosity, wettability and heterogeneity. A bench scale environment created to be analogous to CO₂ and brine in a saline aquifer is created in a quasi-two dimensional experimental apparatus, which allows for observation of plume migration at ambient conditions. A fluid pair analogous to supercritical CO₂ and brine is developed to mimic the density and viscosity relationship found at pressure and temperature typical of storage aquifers. The influences of viscosity ratio, density differences, porous medium wettability and heterogeneity are observed in series of experimental sequences. Three different fluid pairs with different viscosity ratios and density differences are used to assess density and viscosity influences. Porous media of varying grain size and wettability are used to assess the influence of heterogeneity and wettability. Results are qualitatively consistent with theoretical results and those from previous works. / text
|
2 |
Assessment Of Diffusive And Convective Mechanisms During Carbon Dioxide Sequestration Into Deep Saline AquifersOzgur, Emre 01 December 2006 (has links) (PDF)
The analytical and numerical modeling of CO2 sequestration in deep saline aquifers having different properties was studied with diffusion and convection mechanisms. The complete dissolution of CO2 in the aquifer by diffusion took thousands, even millions of years. In diffusion dominated system, an aquifer with 100 m thickness saturated with CO2 after 10,000,000 years. It was much earlier in convective dominant system. In diffusion process, the dissolution of CO2 in aquifer increased with porosity increase / however, in convection dominant process dissolution of CO2 in aquifer decreased with porosity increase. The increase in permeability accelerated the dissolution of CO2 in aquifer significantly, which was due to increasing velocity. The dissolution process in the aquifer realized faster for the aquifers with lower dispersivity. The results of convective dominant mechanism in aquifers with 1md and 10 md permeability values were so close to that of diffusion dominated system. For the aquifer having permeability higher than 10 md, the convection mechanism began to dominate gradually and it became fully convection dominated system for 50 md and higher permeability values. These results were also verified with calculated Rayleigh number and mixing zone lengths. The mixing zone length increased with increase in porosity and time in diffusion dominated system. However, the mixing zone length decreased with increase in porosity and it increased with increase in dispersivity and permeability higher than 10 md in convection dominated system.
|
3 |
Modeling Of Carbon Dioxide Sequestration In A Deep Saline AquiferBasbug, Basar 01 July 2005 (has links) (PDF)
ABSTRACT
MODELING OF CARBON DIOXIDE SEQUESTRATION
IN A DEEP SALINE AQUIFER
BASBUg, BaSar
M.S., Department of Petroleum and Natural Gas Engineering
Supervisor : Prof. Dr. Fevzi Gü / mrah
July 2005, 245 pages
CO2 is one of the hazardous greenhouse gases causing significant changes in the
environment. The sequestering CO2 in a suitable geological medium can be a feasible
method to avoid the negative effects of CO2 emissions in the atmosphere. CO2
sequestration is the capture of, separation, and long-term storage of CO2 in
underground geological environments.
A case study was simulated regarding the CO2 sequestration in a deep saline aquifer.
The compositional numerical model (GEM) of the CMG software was used to study
the ability of the selected aquifer to accept and retain the large quantities of injected
CO2 at supercritical state for long periods of time (200 years). A field-scale model
with two injectors and six water producers and a single-well aquifer model cases were
studied.
In a single-well aquifer model, the effects of parameters such as vertical to horizontal
permeability ratio, aquifer pressure, injection rate, and salinity on the sequestration
process were examined and the sensitivity analyses were performed after simulating
the field-scale model.
The supercritical CO2, one-state fluid which exhibits both gas and liquid-like
properties, and gaseous CO2 were sequestered in the forms of free CO2 bubble,
dissolved CO2 in brine and precipitated CO2 with calcite mineral in a deep saline
aquifer. The isothermal condition was assumed during injection and sequestration
processes. The change in porosity and permeability values that might have occurred
due to mineralization and CO2 adsorption on rock were not considered in this study.
Vertical to horizontal permeability ratio and initial pressure conditions were the most
dominating parameters affecting the CO2 saturation in each layer of the aquifer
whereas CO2 injection rate influenced CO2 saturation in middle and bottom layers
since CO2 was injected through bottom layer.
|
4 |
Thermochemical-based poroelastic modelling of salt crystallization, and a new multiphase flow experiment : how to assess injectivity evolution in the context of CO2 storage in deep aquifersOsselin, Florian 20 December 2013 (has links) (PDF)
In a context of international reduction of greenhouse gases emissions, CCS (ce{CO2} Capture and Storage) appears as a particularly interesting midterm solution. Indeed, geological storage capacities may raise to several millions of tons of ce{CO2} injected per year, allowing to reduce substantially the atmospheric emissions of this gas. One of the most interesting targets for the development of this solution are the deep saline aquifers. These aquifers are geological formations containing brine whose salinity is often higher than sea water's, making it unsuitable for human consumption. However, this solution has to cope with numerous technical issues, and in particular, the precipitation of salt initially dissolved in the aquifer brine. Consequences of this precipitation are multiple, but the most important is the modification of the injectivity i.e. the injection capacity. Knowledge of the influence of the precipitation on the injectivity is particularly important for both the storage efficiency and the storage security and durability. The aim of this PhD work is to compare the relative importance of negative (clogging) and positive (fracturing) phenomena following ce{CO2} injection and salt precipitation. Because of the numerous simulations and modelling results in the literature describing the clogging of the porosity, it has been decided to focus on the mechanical effects of the salt crystallization and the possible deformation of the host rock. A macroscopic and microscopic modelling has then been developed, taking into account two possible modes of evaporation induced by the spatial distribution of residual water, in order to predict the behavior of a porous material subjected to the drying by carbon dioxide injection. Results show that crystallization pressure created by the growth of a crystal in a confined medium can reach values susceptible to locally exceed the mechanic resistance of the host rock, highlighting the importance of these phenomena in the global mechanical behavior of the aquifer. At the experimental level, the study of a rock core submitted to the injection of supercritical carbon dioxide has been proceeded on a new reactive percolation prototype in order to obtain the evolution of permeabilities in conditions similar to these of a deep saline aquifer
|
5 |
Enhanced CO2 Storage in Confined Geologic FormationsOkwen, Roland Tenjoh 30 September 2009 (has links)
Many geoscientists endorse Carbon Capture and Storage (CCS) as a potential strategy
for mitigating emissions of greenhouse gases. Deep saline aquifers have been reported to
have larger CO
2 storage capacity than other formation types because of their availability
worldwide and less competitive usage. This work proposes an analytical model for screening
potential CO
2 storage sites and investigates injection strategies that can be employed to
enhance CO
2 storage.
The analytical model provides of estimates CO 2
storage efficiency, formation pressure
profiles, and CO 2
–brine interface location. The results from the analytical model were
compared to those from a sophisticated and reliable numerical model (TOUGH 2
). The
models showed excellent agreement when input conditions applied in both were similar.
Results from sensitivity studies indicate that the agreement between the analytical model
and TOUGH2 strongly depends on irreducible brine saturation, gravity and on the relationship
between relative permeability and brine saturation.
A series of numerical experiments have been conducted to study the pros and cons of
different injection strategies for CO 2 storage in confined saline aquifers. Vertical, horizontal,
and joint vertical and horizontal injection wells were considered. Simulations results
show that horizontal wells could be utilized to improve CO 2 storage capacity and efficiency
in confined aquifers under pressure-limited conditions with relative permeability
ratios greater than or equal to 0:01. In addition, joint wells are more efficient than single
vertical wells and less efficient than single horizontal wells for CO 2 storage in anisotropic
aquifers.
|
6 |
Thermochemical-based poroelastic modelling of salt crystallization, and a new multiphase flow experiment : how to assess injectivity evolution in the context of CO2 storage in deep aquifers / Modélisation thermochimique et poroélastique de la cristallisation de sel, et nouveau dispositif expérimental d’écoulement multiphasique : comment prédire l’évolution de l’injectivité pour le stockage du CO2 en aquifère profond ?Osselin, Florian 20 December 2013 (has links)
Dans un contexte de réduction internationale des émissions de gaz à effet de serre, les techniques de Captage Transport et Stockage de ce{CO2} (CTSC) apparaissent comme une solution à moyen terme particulièrement efficace. En effet, les capacités de stockage géologique pourraient s'élever jusqu'à plusieurs millions de tonnes de ce{CO2} injectées par an, soit une réduction substantielle des émissions atmosphériques de ce gaz. Une des cibles privilégiées pour la mise en place de cette solution sont les aquifères salins profonds. Ces aquifères sont des formations géologiques contenant une saumure dont la salinité est souvent supérieure à celle de la mer la rendant impropre à la consommation. Cependant, cette technique fait face à de nombreux défis technologiques; en particulier la précipitation des sels, dissous dans l'eau présente initialement dans l'aquifère cible, suite à son évaporation par le ce{CO2} injecté. Les conséquences de cette précipitation sont multiples, mais la plus importante est une modification de l'injectivité, c'est-à-dire des capacités d'injection. La connaissance de l'influence de la précipitation sur l'injectivité est particulièrement importante tant au niveau de l'efficacité du stockage et de l'injection qu'au niveau de la sécurité et de la durabilité du stockage. Le but de ces travaux de thèse est de comparer l'importance relative des phénomènes négatif (colmatage) et positif (fracturation) consécutifs à l'injection de ce{CO2} et à la précipitation des sels. Au vu des nombreux résultats de simulations et de modélisation dans la littérature décrivant le colmatage de la porosité, il a été décidé de porter l'accent sur les effets mécaniques de la cristallisation des sels et la possible déformation de la roche mère. Une modélisation macroscopique et microscopique, tenant compte de deux modes possibles d'évaporation induits par la distribution spatiale de l'eau résiduelle a donc été développée afin de prédire le comportement mécanique d'un matériau poreux soumis à un assèchement par injection de ce{CO2}. Les résultats montrent que la pression de cristallisation consécutive à la croissance d'un cristal en milieu confiné peut atteindre des valeurs susceptibles localement de dépasser la résistance mécanique du matériau, soulignant ainsi l'importance de ces phénomènes dans le comportement mécanique global de l'aquifère. Sur le plan expérimental, les travaux ont porté sur l'utilisation d'un nouveau prototype de percolation réactive afin de reproduire le comportement d'une carotte de roche soumise à l'injection et ainsi obtenir l'évolution des perméabilités dans des conditions similaires à celle d'un aquifère / In a context of international reduction of greenhouse gases emissions, CCS (ce{CO2} Capture and Storage) appears as a particularly interesting midterm solution. Indeed, geological storage capacities may raise to several millions of tons of ce{CO2} injected per year, allowing to reduce substantially the atmospheric emissions of this gas. One of the most interesting targets for the development of this solution are the deep saline aquifers. These aquifers are geological formations containing brine whose salinity is often higher than sea water's, making it unsuitable for human consumption. However, this solution has to cope with numerous technical issues, and in particular, the precipitation of salt initially dissolved in the aquifer brine. Consequences of this precipitation are multiple, but the most important is the modification of the injectivity i.e. the injection capacity. Knowledge of the influence of the precipitation on the injectivity is particularly important for both the storage efficiency and the storage security and durability. The aim of this PhD work is to compare the relative importance of negative (clogging) and positive (fracturing) phenomena following ce{CO2} injection and salt precipitation. Because of the numerous simulations and modelling results in the literature describing the clogging of the porosity, it has been decided to focus on the mechanical effects of the salt crystallization and the possible deformation of the host rock. A macroscopic and microscopic modelling has then been developed, taking into account two possible modes of evaporation induced by the spatial distribution of residual water, in order to predict the behavior of a porous material subjected to the drying by carbon dioxide injection. Results show that crystallization pressure created by the growth of a crystal in a confined medium can reach values susceptible to locally exceed the mechanic resistance of the host rock, highlighting the importance of these phenomena in the global mechanical behavior of the aquifer. At the experimental level, the study of a rock core submitted to the injection of supercritical carbon dioxide has been proceeded on a new reactive percolation prototype in order to obtain the evolution of permeabilities in conditions similar to these of a deep saline aquifer
|
7 |
Improved tracer techniques for georeservoir applications / Artificial tracer examination identifying experimentally relevant properties and potential metrics for the joint application of hydrolysis tracer and heat injection experimentsMaier, Friedrich 24 October 2014 (has links)
Für eine effiziente und nachhaltige Nutzung von Georeservoiren sind bestmögliche Reservoirmanagementverfahren erforderlich. Oft setzen diese Verfahren auf Tracer-Tests. Dabei enthalten die aufgezeichneten Tracersignale integrale Informationen der Reservoireigenschaften. Tracer-Tests bieten somit eine leistungsfähige Technik zur Charakterisierung und Überwachung der bewirtschafteten Georeservoire. Im Gegensatz zu Tracer-Tests mit konservativen Tracern, welche bereits etablierte Testroutinen zur Verfügung stellen, ist die Verwendung von reaktiven Tracern ein neuer Ansatz. Aufgrund unpassender physikalisch-chemischer Modelle und/oder falschen Annahmen ist die Analyse und Interpretation von reaktiven Tracersignalen jedoch oft verzerrt, fehlinterpretiert oder sogar unmöglich. Reaktive Tracer sind dennoch unersetzbar, da sie durch die gezielte Ausnutzung selektiver und spezifischer Reaktionen mögliche Metriken von Reservoirtestverfahren auf einzigartige Weise erweitern. So liefern reaktive Tracer für ein integriertes Reservoirmanagement geforderten Aussagen über Reservoirmetriken wie z.B. Wärmeaustauschflächen oder in-situ Temperaturen.
Um Unsicherheiten bei der Auswertung von Tracerexperimenten zu reduzieren, werden theoretische und experimentelle Untersuchungen zu hydrolysierenden Tracern vorgestellt. Diese Tracer sind durch ihre Reaktion mit Wasser charakterisiert. Einerseits können sie als thermo-sensitive Tracer Informationen über Temperaturen und abgekühlte Anteile eines beprobten Reservoirs liefern. Für die Interpretation von thermo-sensitiven Tracerexperimenten sind die Kenntnis der zugrunde liegenden Reaktionsmechanismen sowie bekannte Arrhenius-Parameter Voraussetzung, um die verwendete Reaktion pseudo erster Ordnung nutzen zu können. Darüber hinaus ermöglichen die verwendeten Verbindungen durch ihre Fluoreszenzeigenschaften eine Online-Messung. Um die Empfindlichkeit und praktischen Grenzen thermo-sensitiver Tracer zu untersuchen, wurden kontrollierte Laborexperimente in einem eigens dafür entwickelten Versuchsaufbau durchgeführt. Dieser besteht aus zwei seriell geschalteten Säulen, die beide mit Sand gefüllt sind und jeweils auf eine eigene Temperatur eingestellt werden können. Somit ist es möglich, verschiedene thermische Einstellungen zu betrachten. Die untersuchten experimentellen Szenarien imitieren größtenteils Feldanwendungen: Durchflussexperimente sowie auch Experimente mit einer Umkehr der Fließrichtung. Darüber hinaus wurde untersucht, ob thermo-sensitive Tracer auch sensitiv gegenüber der Position der Temperaturfront sind. Dabei wurden die Tracer kontinuierlich oder gepulst injiziert. Die Ergebnisse bestätigen die zugrunde liegende Theorie experimentell. Wenn die pH-Abhängigkeit der Hydrolyse bei der Analyse berücksichtigt wird, kann eine Temperaturschätzung mit einer Genauigkeit und Präzision von bis zu 1 K erreicht werden. Die Schätzungen sind von Verweilzeit und gemessenen Konzentrationen unabhängig. Weiterhin lässt sich eine Schätzung über den ausgekühlten Anteil des Systems erhalten. Durch die steuerbaren und definierten Laborbedingungen ist es erstmals möglich, die geforderte Anwendbarkeit von thermo-sensitiven Tracern belastbar nachzuweisen.
Des Weiteren wird eine zweite Anwendung hydrolysierender Tracer vorgeschlagen. Beim Lösen von CO2 für „Carbon Capture and Storage“-Anwendungen hängt die Effizienz maßgeblich von der Grenzfläche zwischen CO2 und der Sole in tiefen Reservoiren ab. Somit ist diese Metrik wichtig, um die Effizienz der CO2 Auflösung in Wasser zu bewerten. Die gezielt entwickelten Kinetic-Interface-Senitive-Tracer (KIS-Tracer) nutzen, zusätzlich zur Hydrolyse an der Grenzfläche, die unterschiedlichen Lösungseigenschaften von Tracer und Reaktionsprodukt im entsprechenden Fluid. Somit lassen sich potentiell Aussagen über die Dynamik der Grenzfläche machen. Neben dem grundlegenden Konzept sowie den theoretischen Tracer-Anforderungen wird eine erste Anwendung im Laborexperiment vorgestellt. Diese zeigt das erfolgreiche, zielorientierte Moleküldesign und bietet eine experimentelle Basis für ein makroskopisches numerisches Modell, mit welchem numerische Simulationen verschiedener Testszenarien durchgeführt werden, um das Zusammenspiel von KIS-Tracer und dynamischer Grenzfläche zu untersuchen.
Aufgrund der Temperaturabhängigkeit der Reaktionsgeschwindigkeit hydrolysierender Tracer werden in der Regel auch thermische Signale aufgezeichnet. Der letzte Teil prüft die Möglichkeit, Informationen aus den aufgezeichneten Temperaturen zu extrahieren. Für ein idealisiertes Einzelkluftsystem wird eine Reihe von analytischen Lösungen diskutiert. Aus thermischen Injektion-/Entzugsversuchen können damit räumliche und zeitliche Profile abgeleitet werden. Mit der Verwendung von mathematisch effizienten Inversionsverfahren wie der iterativen Laplace-Transformation lassen sich rechentechnisch effiziente Realraum-Lösungen ableiten. Durch die Einführung von drei dimensionslosen Kennzahlen können die berechneten Temperaturprofile auf Bruchbreite oder Wärmetransportrate, wechselnde Injektions-/ Pumpraten und/oder auf in der Nähe beobachtbare räumliche Informationen analysiert werden. Schließlich werden analytische Lösungen als Kernel-Funktionen für nichtlineare Optimierungsalgorithmen vorgestellt.
Zusammenfassend bearbeitet die vorliegende Arbeit den Übergang zwischen Tracerauswahl und Traceranwendung. Die Ergebnisse helfen Planungs- und Analyseunsicherheiten zu reduzieren. Dies wird bezüglich der Empfindlichkeit gegenüber Temperaturen, Kühlungsanteilen, flüssig/flüssig-Grenzfläche, Kluftbreite und Wärmetransportrate gezeigt. Somit bieten die vorgestellten Tracerkonzepte neue Metriken zur Verbesserung von Reservoirmanagementverfahren. Die experimentellen Ergebnisse und die neuen analytischen Modelle ermöglichen einen tiefen Einblick in die kollektive Rolle der Parameter, welche die Hydrolyse und den Wärmetransport in Georeservoiren kontrollieren.
|
Page generated in 0.1008 seconds