• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

From Physical Model To Proof For Understanding Via DGS: Interplay Among Environments

Osta, Iman M. 07 May 2012 (has links) (PDF)
The widespread use of Dynamic Geometry Software (DGS) is raising many interesting questions and discussions as to the necessity, usefulness and meaning of proof in school mathematics. With these questions in mind, a didactical sequence on the topic “Conics” was developed in a teacher education course tailored for pre-service secondary math methods course. The idea of the didactical sequence is to introduce “Conics” using a concrete manipulative approach (paper folding) then an explorative DGS-based construction activity embedding the need for a proof. For that purpose, the DGS software serves as an intermediary tool, used to bridge the gap between the physical model and the formal symbolic system of proof. The paper will present an analysis of participants’ geometric thinking strategies, featuring proof as an embedded process in geometric construction situations.
2

From Physical Model To Proof For Understanding Via DGS:Interplay Among Environments

Osta, Iman M. 07 May 2012 (has links)
The widespread use of Dynamic Geometry Software (DGS) is raising many interesting questions and discussions as to the necessity, usefulness and meaning of proof in school mathematics. With these questions in mind, a didactical sequence on the topic “Conics” was developed in a teacher education course tailored for pre-service secondary math methods course. The idea of the didactical sequence is to introduce “Conics” using a concrete manipulative approach (paper folding) then an explorative DGS-based construction activity embedding the need for a proof. For that purpose, the DGS software serves as an intermediary tool, used to bridge the gap between the physical model and the formal symbolic system of proof. The paper will present an analysis of participants’ geometric thinking strategies, featuring proof as an embedded process in geometric construction situations.

Page generated in 0.0267 seconds