Spelling suggestions: "subject:"billfishes -- embryos -- physiology."" "subject:"billfishes -- embryos -- hophysiology.""
1 |
Characterizing the Molecular Changes of Austrofundulus limnaeus As It Develops Towards and Enters Diapause IIToni, Lee S. 12 1900 (has links)
Austrofundulus limnaeus is a species of annual killifish which inhabits ephemeral ponds in South America. The species is able to survive seasonally desiccating ponds due to their ability to produce robust embryos. The embryos of this species are capable of entering a developmental arrest, termed diapause II, which precedes the onset of drought. While in this arrested state embryos exhibit the greatest tolerance to anoxia of any characterized vertebrate at 25ºC. Furthermore, when raised at 30ºC, embryos escape the entrance to diapause II and go on to develop directly. Currently, little is known about the molecular mechanisms which induce and maintain this developmentally arrested state. In this study I have developed methods to analyze changes in histone modifications in the context of diapause II. Histone modifications were chosen due to their extreme conservation and well characterized role as modulators of gene expression in other systems. Results utilizing adapted immunobased assays show significant changes in the global amount of H3S10P, H3K27me and H3K4me, as the embryos progress from early embryogenesis through the exit of diapause. Additionally, it is revealed that there exists a degree of phenotypic plasticity with regards to the entrance into diapause II which is modulated by the environment (severe hypoxia 0.1% O2). This work builds a foundation for future histone modification studies and contributes the development of several tools to the field. This study contributes to a greater molecular understanding of the cue(s) which influence the remarkable phenomenon of obligate developmental arrest in a vertebrate embryo.
|
Page generated in 0.0476 seconds