• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Implication of DNA damage and repair in viability and differentiation of muscle stem cells / Implication des dommages à l’ADN et leur réparation sur la viabilité et la différentiation des cellules souches musculaires

Sutcu, Haser 20 September 2018 (has links)
Les cassures double-brin (DSB) sont des dommages dangereux de l’ADN et représentent un facteur de risque pour la stabilité du génome. Le maintien de l'intégrité du génome est essentiel pour les cellules souches adultes, qui sont responsables de la régénération des tissus endommagés et de l'homéostasie tissulaire tout au long de la vie. La régénération musculaire chez l'adulte repose sur les cellules souches musculaires (cellules satellites, SCs) qui possèdent une remarquable capacité de réparation des DSB, mais dont le mécanisme sous-jacent reste inconnu. Ce projet de thèse consistait à étudier comment la différenciation musculaire est affectée lorsque la réparation des DSB est altérée, et quels sont le(s) mécanisme(s) et les conséquences de ce défaut de réparation sur la régénération musculaire. Au cours de cette étude, il est apparu de façon originale que les facteurs de réparation des DSB peuvent affecter la myogenèse, indépendamment de leur fonction dans la réparation de l'ADN. La présente étude a porté sur le rôle de la protéine kinase dépendante de l'ADN (DNA-PK), un facteur crucial pour la réparation non-homologue des DSBs (NHEJ), au cours de la différenciation musculaire chez la souris. L’étude a ciblé l'activation des SCs et la régénération musculaire in vitro et in vivo et a également abordé la régulation de cette kinase. Le rôle "canonique" de la DNA-PK, et donc du NHEJ, dans les SCs a également été étudié en présence de lésions de l'ADN radio-induites. Le rôle d’ATM, une kinase qui orchestre les réponses cellulaires aux DSB, a également été abordé dans le contexte de la régénération musculaire. Ces résultats confirment la notion émergente du rôle multifonctionnel des protéines de réparation de l’ADN dans d’autres processus physiologiques que la réparation elle-même, ce qui m’a également permis de réaliser une étude bibliographique. Ce travail i) identifie de nouveaux régulateurs de la myogenèse et ii) contribue à la compréhension de la résistance des cellules souches musculaires au stress génotoxique. Ces résultats pourraient avoir des implications dans l'amélioration des thérapies cellulaires de la dysfonction musculaire en agissant sur les régulateurs nouvellement découverts. / DNA double-strand breaks (DSBs) are dangerous DNA damages and a risk factor for genome stability. The maintenance of genome integrity is crucial for adult stem cells that are responsible for regeneration of damaged tissues and tissue homeostasis throughout life. Muscle regeneration in the adult relies on muscle stem cells (satellite cells, SCs) that have a remarkable DSB repair activity, but the underlying mechanism is not known. The aims of the present PhD project were to investigate how muscle differentiation is affected when DSB repair is impaired, and which are the mechanism(s) and the consequences on muscle regeneration. During this study, a novel possibility has arisen, namely that DSB repair factors affects myogenesis independently of their DNA repair activity, suggesting a novel function, not previously anticipated, of these factors. The present study has addressed the role of DNA-dependent protein kinase (DNA-PK), a crucial factor in non-homologous end-joining (NHEJ) repair of DSBs, in muscle differentiation in the mouse. Studies have targeted SC activation and muscle regeneration in vitro and in vivo and also addressed the regulation of this kinase. In parallel the more “canonical” role of DNA-PK, and thereby of NHEJ, has been investigated in SCs via radiation-induced DNA damage. The role of ATM, a kinase that orchestrates cellular responses to DSBs in muscle regeneration has also been addressed. These results support the emerging notion of multifunctional repair proteins in a variety of physiological processes beyond the repair process itself, on which I have conducted a bibliographical study. This work i) identifies novel regulators of myogenesis, and ii) helps understanding the resistance of muscle stem cells to genotoxic stress. It has potential implications for improving cellular therapies for muscle dysfunction by acting on the newly discovered regulators.
2

Identification et caractérisation des mécanismes d'action des molécules appats, les SiDNA, dans l'inhibition des voies de réparation des cassures simple-brin / Identification and characterization of bait molecules mechanisms of action, the SIDNA, in the inhibition of single strand break repair pathway

Croset, Amélie 06 May 2013 (has links)
La plupart des traitements anticancéreux, comme la chimiothérapie ou la radiothérapie, sont cytotoxiques et causent des dommages à l'ADN dans le but d’induire la mort des cellules tumorales. Cependant, l’efficacité d’activité de réparation de l'ADN des tumeurs entraine des résistances intrinsèques et acquises aux traitements. L'une des étapes précoces de la réparation de l’ADN est le recrutement de protéines au niveau du site de dommage. Ce recrutement est coordonné par une cascade de modifications et est contrôlé par des protéines senseurs telles que la protéine kinase ADN dépendante (DNA-PK) et / ou la poly (ADP- ribose) polymérase (PARP). Dans ce manuscrit, nous avons identifié et caractérisé le mécanisme d'action de petites molécules d'ADN (les siDNA), mimant des cassures double brin (appelé Dbait) ou simple brin (appelé Pbait), dans l’inhibition des voies de réparation des cassures simple brin (SSBR/BER). Nous démontrons que les molécules Dbait recrutent et activent à la fois PARP et DNA-PK, contrairement aux molécules Pbait qui ne recrutent que la PARP. L'étude comparative de ces deux molécules permet d'analyser les rôles respectifs des deux voies de signalisation: les deux molécules recrutent les protéines impliquées dans la voie de réparation des cassures simple brin (comme PARP, PCNA et XRCC1) et empêchent leurs recrutements aux niveaux des lésions chromosomiques. Les molécules Dbait inhibent par ailleurs le recrutement des protéines impliquées dans la voie de réparation des cassures double brin (NHEJ et HR). Pbait et Dbait désorganisent la réparation de l’ADN et sensibilisent les cellules tumorales aux traitements. L’inhibition de la réparation des cassures simple brin semble dépendre d’un piégeage des protéines directement sur les siDNA ou indirectement sur les polymères PAR. L’inhibition des voies de réparation des cassures double brin (DSB) semble par contre se faire de façon indirecte ; cette inhibition résulterait plutôt de la phosphorylation des protéines de réparation des DSB de part l’activation de DNA-PK. Les molécules Dbait et Pbait induisent un effet de létalité synthétique des cellules tumorales BRCA mutées. Cependant, la mutation BRCA semble être suffisante mais non nécessaire pour induire la sensibilité des cellules tumorales aux traitements Dbait. En effet, nous avons démontré que les molécules Dbait peuvent aussi sensibiliser les cellules ne présentant pas de mutation BRCA mais ayant toutefois une forte instabilité génétique. Nous avons trouvé une corrélation entre le niveau basal de protéines de réparation de l'ADN (ɣH2AX, PARP et PAR), le taux basal de cassures à l’ADN, la présence de micronoyaux (MN) et la sensibilité des cellules tumorales au traitement Dbait. Nous avons émis l’hypothèse que cette instabilité génétique, déterminé par la quantification de MN dans des biopsies tumorales, pourrait être un biomarqueur prédictif de l’effet du Dbait, non seulement dans les cancers du sein, mais aussi dans les glioblastomes, les mélanomes, les mélanomes uvéaux et les cancers du côlon. / Most conventional cancer treatments, such as chemotherapy or radiotherapy, are cytotoxic and cause DNA damages in the tumoral treated cells, which ultimately lead to their death. However, several intrinsic and acquired resistances of tumors to these treatments are due to the tumor efficient DNA repair activities. One of the major early steps of DNA repair is the recruitment of repair proteins at the damage site and this is coordinated by a cascade of modifications controlled by sensor proteins such as DNA-dependent protein kinase (DNA-PK) and/or poly (ADP-ribose) polymerase (PARP). In this manuscript, we identify and characterize the mechanism of action of short interfering DNA molecules (siDNA), mimicking double-strand breaks (called Dbait) or single-strand breaks (called Pbait) in Single Strand Break Repair pathway (SSBR/BER) inhibition. We demonstrate that Dbait bound and induced both PARP and DNA-PK activities, whereas Pbait acts only on PARP. The comparative study of the two molecules allows analysis of the respective roles of the two signaling pathways: both molecules recruit proteins involved in single-strand break repair (such as PARP, XRCC1 and PCNA) and prevent their recruitment at chromosomal damage. Dbait, but not Pbait, also inhibits recruitment of proteins involved in double-strand break (DSB) repair. By these ways, Pbait and Dbait disorganized DNA repair, thereby sensitizing cells to treatments. SSB repair inhibition depends upon a direct trapping of the main proteins on both molecules and an indirect trapping in PAR polymers. DSB repair inhibition may be indirect, resulting from the phosphorylation of DSB repair proteins by activated DNA-PK. The DNA repair inhibition by both molecules is confirmed by their synthetic lethality with BRCA mutations tumoral cell lines. However, BRCA mutation could be sufficient but not necessary to induce breast cancer cell lines and tumors sensitivity to Dbait treatment. In fact, we demonstrate that Dbait molecules could also have a stand-alone effect in BRCA wild type cells with a high genetic instability. We found a correlation between DNA repair proteins basal level (ɣH2AX, PARP and PAR), DNA break basal level, presence of micronucleus (MN) and tumoral cell lines sensitivity to Dbait treatment. We hypothesis that this genetic instability, determined by MN in tumor biopsies, could be a predictive biomarker of Dbait stand-alone effect, not only in breast cancer treatment, but also in glioblastoma, melanoma, uveal melanoma and colon cancer treatment.

Page generated in 0.0394 seconds