• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Le suppresseur de tumeur HIC1 est une nouvelle cible directe de la kinase ATM et un acteur multifonctionnel de la réponse cellulaire aux cassures double brin (DSBs) de l’ADN / The tumor suppressor HIC1 is a new direct target of the ATM kinase and a multifunctional player in the cellular responses to DNA double-strand breaks

Paget, Sonia 15 December 2016 (has links)
Le gène HIC1 a été caractérisé comme un gène suppresseur de tumeur situé en 17p13.3, une région hyperméthylée ou délétée dans de nombreux cancers. HIC1 code un répresseur transcriptionnel caractérisé par plusieurs domaines fonctionnels. Au niveau de la région centrale, se retrouve un motif conservé MK314HEP important pour la répression des gènes cibles de HIC1 au sein duquel la Lysine 314 est soit SUMOylée soit acétylée. HIC1 est au centre de boucles de régulation complexes mettant en jeu le gène suppresseur de tumeurs TP53 et la désacétylase SIRT1. En réponse aux cassures double brin de l’ADN (DSBs) non réparables, HIC1 réprime l’expression de SIRT1 favorisant ainsi l’apoptose médiée par p53. De plus, dans ces conditions on observe une augmentation de la SUMOylation de la Lysine 314 de HIC1 de manière dépendante de la kinase ATM, ce qui favorise l’interaction avec le complexe répresseur NuRD. HIC1 joue également un rôle dans la réparation des DSBs. Nous avons montré que la SUMOylation de HIC1 n’était pas nécessaire pour la réparation des DSBs. Grâce à une analyse de protéomique, nous avons identifié un site potentiel de phosphorylation LS694QG par des kinases de la famille PIKK. Ainsi, nous avons montré dans des fibroblastes humains BJ-hTERT, que la protéine HIC1 est rapidement phosphorylée sur la Sérine 694 par la kinase ATM en réponse aux DSBs. De plus, par la technique de « Comet Assay » nous avons montré que cette phosphorylation est importante pour la réparation.HIC1 jouerait donc un double rôle dans la réponse aux dommages à l’ADN : soit il agirait en tant que répresseur transcriptionnel dans le cas de DSBs non réparables, soit il faciliterait la réparation des DSBs. / The tumor suppressor gene HIC1 is located in 17p13.3, a region frequently hypermethylated or deleted in many cancers. HIC1 encodes a transcriptional repressor characterized by several functional domains. In the central region, the conserved MK314HEP motif is an Acetylation/SUMOylation switch motif centered on K314 which regulates the recruitment of MTA1, a component of NuRD repressor complexes. A regulatory feedback loop between HIC1, SIRT1 and P53 has been described. HIC1 directly represses the transcription of SIRT1, thereby modulating P53-dependent DNA damage responses. Furthermore, after induction of non-repairable DSBs (DNA Double Strand Breaks), we observed a SUMOylation increase dependant on the ATM kinase. Moreover, HIC1 also plays an important role in the repair of DSBs. Furthermore, comet assays with a non SUMOylable HIC1 point mutant (E316A) demonstrated that SUMOylation of Lysine K314 is dispensable for DNA repair. In addition, upon induction of repairable DSBs, we have identified by proteomic analyses, a potential phosphorylation site “LS694QG” for the PIKK family kinases ATM and DNA-PKcs. Moreover, we have shown that HIC1 is rapidly phosphorylated by ATM upon DNA damage induction in normal human fibroblasts (BJ-hTert). Furthermore, comet assays with a non phosphorylable HIC1 point mutant have shown that this phosphorylation is very important for the contribution of HIC1 to the repair of DSBs. Thus, HIC1 plays different role during the DNA damage response to DNA double strand breaks depending on their intensity.
2

Investigation of the role of FXR1 and SLFN11 in cellular response to genotoxic stress / 遺伝毒性ストレスに対する細胞応答におけるFXR1、SLFN11の役割の解析

Qi, Fei 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(人間・環境学) / 甲第24692号 / 人博第1065号 / 新制||人||250(附属図書館) / 2022||人博||1065(吉田南総合図書館) / 京都大学大学院人間・環境学研究科相関環境研究専攻 / (主査)教授 高田 穣, 教授 宮下 英明, 教授 川本 卓男, 教授 原田 浩 / 学位規則第4条第1項該当 / Doctor of Human and Environmental Studies / Kyoto University / DFAM
3

Implication of DNA damage and repair in viability and differentiation of muscle stem cells / Implication des dommages à l’ADN et leur réparation sur la viabilité et la différentiation des cellules souches musculaires

Sutcu, Haser 20 September 2018 (has links)
Les cassures double-brin (DSB) sont des dommages dangereux de l’ADN et représentent un facteur de risque pour la stabilité du génome. Le maintien de l'intégrité du génome est essentiel pour les cellules souches adultes, qui sont responsables de la régénération des tissus endommagés et de l'homéostasie tissulaire tout au long de la vie. La régénération musculaire chez l'adulte repose sur les cellules souches musculaires (cellules satellites, SCs) qui possèdent une remarquable capacité de réparation des DSB, mais dont le mécanisme sous-jacent reste inconnu. Ce projet de thèse consistait à étudier comment la différenciation musculaire est affectée lorsque la réparation des DSB est altérée, et quels sont le(s) mécanisme(s) et les conséquences de ce défaut de réparation sur la régénération musculaire. Au cours de cette étude, il est apparu de façon originale que les facteurs de réparation des DSB peuvent affecter la myogenèse, indépendamment de leur fonction dans la réparation de l'ADN. La présente étude a porté sur le rôle de la protéine kinase dépendante de l'ADN (DNA-PK), un facteur crucial pour la réparation non-homologue des DSBs (NHEJ), au cours de la différenciation musculaire chez la souris. L’étude a ciblé l'activation des SCs et la régénération musculaire in vitro et in vivo et a également abordé la régulation de cette kinase. Le rôle "canonique" de la DNA-PK, et donc du NHEJ, dans les SCs a également été étudié en présence de lésions de l'ADN radio-induites. Le rôle d’ATM, une kinase qui orchestre les réponses cellulaires aux DSB, a également été abordé dans le contexte de la régénération musculaire. Ces résultats confirment la notion émergente du rôle multifonctionnel des protéines de réparation de l’ADN dans d’autres processus physiologiques que la réparation elle-même, ce qui m’a également permis de réaliser une étude bibliographique. Ce travail i) identifie de nouveaux régulateurs de la myogenèse et ii) contribue à la compréhension de la résistance des cellules souches musculaires au stress génotoxique. Ces résultats pourraient avoir des implications dans l'amélioration des thérapies cellulaires de la dysfonction musculaire en agissant sur les régulateurs nouvellement découverts. / DNA double-strand breaks (DSBs) are dangerous DNA damages and a risk factor for genome stability. The maintenance of genome integrity is crucial for adult stem cells that are responsible for regeneration of damaged tissues and tissue homeostasis throughout life. Muscle regeneration in the adult relies on muscle stem cells (satellite cells, SCs) that have a remarkable DSB repair activity, but the underlying mechanism is not known. The aims of the present PhD project were to investigate how muscle differentiation is affected when DSB repair is impaired, and which are the mechanism(s) and the consequences on muscle regeneration. During this study, a novel possibility has arisen, namely that DSB repair factors affects myogenesis independently of their DNA repair activity, suggesting a novel function, not previously anticipated, of these factors. The present study has addressed the role of DNA-dependent protein kinase (DNA-PK), a crucial factor in non-homologous end-joining (NHEJ) repair of DSBs, in muscle differentiation in the mouse. Studies have targeted SC activation and muscle regeneration in vitro and in vivo and also addressed the regulation of this kinase. In parallel the more “canonical” role of DNA-PK, and thereby of NHEJ, has been investigated in SCs via radiation-induced DNA damage. The role of ATM, a kinase that orchestrates cellular responses to DSBs in muscle regeneration has also been addressed. These results support the emerging notion of multifunctional repair proteins in a variety of physiological processes beyond the repair process itself, on which I have conducted a bibliographical study. This work i) identifies novel regulators of myogenesis, and ii) helps understanding the resistance of muscle stem cells to genotoxic stress. It has potential implications for improving cellular therapies for muscle dysfunction by acting on the newly discovered regulators.

Page generated in 0.0365 seconds